Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{22-3x}{4-x}\)
A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)
A = 3 + \(\dfrac{10}{4-x}\)
A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi
4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒ \(x\) = 3
Vậy Amin = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3
Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3
\(A=\frac{2006-x}{6-x}=1+\frac{2000}{6-x}\)
Để \(1+\frac{2000}{6-x}\) đạt GTLN <=> \(\frac{2000}{6-x}\) đạt GTLN
Mà x nguyên => 6 - x là số nguyên dương nhỏ nhất Tức là 6 - x = 1 => x = 5
Vậy GTNN của A là \(\frac{2006-5}{6-5}=2001\) tại x = 5
x=5;A=2001
tự tìm hiểu cách giải nha.Tiện thể tôi không phải là uzumaki naruto đâu
\(A=\frac{2006-x}{6-x}=1\frac{2000}{6-x}\)
=> để A đạt gia trị lớn nhất thì 6-x phải đạt giá trị nhỏ nhất (>0) và x khác 6
A lớn nhất khi 6-x nên => 6-x=1
=> x=5
giá trị lớn nhất của A khi đó là:
A=(2006-5)/(6-5)=2001
\(A=\frac{2000+6-x}{6-x}=1+\frac{2000}{6-x}\)
A đạt GTLN \(\Leftrightarrow\frac{2000}{6-x}\)đạt GTLN
\(\frac{2000}{6-x}\)đạt GTLN \(\Leftrightarrow6-x\) đạt GTNN
Ta có \(6-x\ge1\)
Dấu = xảy ra \(\Leftrightarrow x=5\)
Do đó GTLN của A \(=1+\frac{2000}{1}=2001\)
Vậy GTLN của A là 2001 \(\Leftrightarrow x=5\)