K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=16\)

hay AC=4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=1.8cm\\CH=3.2cm\\AH=2.4cm\end{matrix}\right.\)

23 tháng 8 2021

 

 

Xét tam giác ABC vuông tại A

+ Theo định lý Pytago ta có:

 

 

+ Theo hệ thức lượng trong tam giác vuông ta có:

A B 2 = BH. BC => BH =  A B 2 B C = 3 2 5 = 9 5 = 1 , 8 c m

Mà BH + CH = BC => CH = BC – BH = 5 – 1,8 = 3,2 cm

Lại có AH. BC = AB.AC => AH = A B . A C B C = 3.4 5  = 2,4cm

Vậy BH = 1,8cm, CH = 3,2cm, AC = 4cm, AH = 2,4 cm

10 tháng 1 2019

Xét tam giác ABC vuông tại A

+ Theo định lý Pytago ta có:

+ Theo hệ thức lượng trong tam giác vuông ta có:

A B 2 = BH. BC => BH =  A B 2 B C = 3 2 5 = 9 5 = 1 , 8 c m

Mà BH + CH = BC => CH = BC – BH = 5 – 1,8 = 3,2 cm

Lại có AH. BC = AB.AC => AH = A B . A C B C = 3.4 5  = 2,4cm

Vậy BH = 1,8cm, CH = 3,2cm, AC = 4cm, AH = 2,4 cm

Đáp án cần chọn là: B

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

30 tháng 9 2018

a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; AC = 4cm

b, AB = 65cm; AC = 156cm; BC = 169cm; BH = 25cm

c, AB = 5cm; BC = 13cm; BH = 25/13cm; CH = 144/13cm

7 tháng 11 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác ABC vuông tại A có:

A B 2 + A C 2 = B C 2

Đề kiểm tra Toán 9 | Đề thi Toán 9

Tam giác ABC vuông tại A có AH là đường cao nên ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

BH + CH = BC ⇒ CH = BC - BH = 5 - 9/5 = 16/5 (cm)

24 tháng 1 2017

ta có BH + HC = BC ( vì điểm H nằm giữa B và C )

    hay 3 + 8 = BC 

suy ra BC =  11 

áp dụng định lý pi ta go thì bạn sẽ tìm ra AC

Bài 1:

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=5^2-3^2=16\)

hay AC=4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Bài 2: 

Ta có: BC=HB+HC

nên BC=3,6+6,4

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)

hay AH=4,8cm

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o