\(\dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{729}\)
tinhs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
3A = 3 + 1 + \(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
3A - A = ( 3 + 1 + \(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\) ) - ( \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\) )
2A = 3 - \(\dfrac{1}{729}=\dfrac{728}{729}\)
A = \(\dfrac{728}{729}:2=\dfrac{364}{729}\)
\(A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
\(3A=3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
\(3A-A=\left(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\right)\)
\(2A=3-\dfrac{1}{729}=\dfrac{2186}{729}\)
\(A=\dfrac{2186}{729}\div2=\dfrac{1093}{729}\)
A = \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
3A = \(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
3A - A = ( \(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\) ) - ( \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\) )
2A = 3 - \(\dfrac{1}{729}=\dfrac{728}{729}\)
A = \(\dfrac{728}{729}:2=\dfrac{364}{729}\)
$A=\dfrac{2018.2017-1}{2016.2018+2017}$
$=>A={2018.2016+2018-1}{2016.2018+2017}$
$=>A={2018.2016+2017}{2016.2018+2017}$
$=>A=1$
\(A=\dfrac{2018.2017-1}{2018.2016+2017}\)
\(A=\dfrac{2018.\left(2016+1\right)-1}{2018.2016+2017}\)
\(A=\dfrac{2018.2016+2018-1}{2018.2016+2017}\)
\(A=\dfrac{2018.2016+2017}{2018.2016+2017}=1\)
\(B=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}+\dfrac{1}{2187}\)
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^7}\)
\(\Rightarrow3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^6}\)
\(\Rightarrow3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^6}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^7}\right)\)
\(\Rightarrow2B=1-\dfrac{1}{3^7}\Rightarrow B=\dfrac{1-\dfrac{1}{2187}}{2}=\dfrac{1093}{2187}\)
Chúc bạn học tốt!!!
\(\dfrac{1}{3}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)+\(\dfrac{1}{729}\)
=\(\dfrac{243}{729}\)+\(\dfrac{81}{729}\)+\(\dfrac{27}{729}\)+\(\dfrac{3}{729}\)+\(\dfrac{1}{729}\)
=\(\dfrac{355}{729}\)
chúc bạn học tốt ạ
a) \(\dfrac{1}{2}-\dfrac{3}{4}.\dfrac{-6}{5}\)
\(=\dfrac{1}{2}-\dfrac{3.\left(-6\right)}{4.5}\)
\(=\dfrac{1}{2}-\dfrac{-18}{20}\)
\(=\dfrac{1}{2}+\dfrac{9}{10}\)
\(=\dfrac{5}{10}+\dfrac{9}{10}\)
\(=\dfrac{5+9}{10}\)
\(=\dfrac{14}{10}\)
\(=\dfrac{7}{5}\)
b) \(\dfrac{\dfrac{1^0}{9}.3^2.9^3}{729}\)
\(=\dfrac{9^{-1}.3^2.9^3}{729}\)
\(=\dfrac{9^{-1}.9.9^3}{729}\)
\(=\dfrac{9^{-1+1+3}}{729}\)
\(=\dfrac{9^3}{729}\)
\(=\dfrac{729}{729}\)
\(=1\)
\(\dfrac{1}{x^2+x+1}-\dfrac{1}{x-x^2}-\dfrac{x^2+2x}{x^3-1}\)
\(=\dfrac{\left(x-1\right)x}{x\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2+x+1}{x\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{\left(x^2+2x\right)x}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+x^2+x+1-x^3-2x^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{1-x^3}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-\left(x^3-1\right)}{x\left(x^3-1\right)}=\dfrac{-1}{x}\)
\(\dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{729}\\ =\dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^6}\\ =\dfrac{3-1}{2}\cdot\left(\dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^6}\right)\\ =\dfrac{\left(3-1\right)\left(\dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^6}\right)}{2}\\ =\dfrac{3-1+1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^5}-\dfrac{1}{3^6}}{2}\\ =\dfrac{3-\dfrac{1}{3^6}}{2}\\ =\dfrac{\dfrac{3^7}{3^6}-\dfrac{1}{3^6}}{2}\\ =\dfrac{2187-1}{729}\cdot\dfrac{1}{2}\\ =\dfrac{2186}{729}\cdot\dfrac{1}{2}\\ =\dfrac{1093}{729}\)
Đặt biểu thức là P , theo bài ra ta có:
\(\dfrac{1}{3}P=\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^6}+\dfrac{1}{3^7}\)
\(=>P-\dfrac{1}{3}P=\left(1-\dfrac{1}{3^7}\right)\)
\(=>\dfrac{2}{3}P=\dfrac{2186}{2187}\)
\(=>P=\dfrac{2186}{2187}:\dfrac{2}{3}=\dfrac{1093}{729}\)
CHÚC BẠN HỌC TỐT.......