Chứng tỏ rằng |a|+|b| lớn hơn hoặc bằng |a+b|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy :
|a| + |b| = ( +a ) + ( +b) = | a+b | = | a+b | => ĐPCM
CMR : a2 lớn hơn hoặc bằng 0
Nếu a là 0 thì a2 = 0
Nếu a ∈ N* thì a2 > 0
☛ Vậy a ∈ N thì a2 ≥ 0
CMR : -a2 bé hơn hoặc bằng 0
Nếu a là 0 thì -a2 = 0
Nếu a ∈ N* thì -a2 < 0
☛ Vậy a ∈ N thì -a2 ≤ 0
*Trường hợp 1: a≠0
Ta có: \(a^2=a\cdot a=\left(-a\right)\cdot\left(-a\right)\)
Vì hai số cùng dấu nhân với nhau luôn ra số dương nên \(a^2>0\forall a\ne0\)(1)
*Trường hợp 2: a=0
Ta có: \(a^2=0^2=0\)
Do đó, \(a^2=0\forall a=0\)(2)
Từ (1) và (2) suy ra \(a^2\ge0\forall a\)
\(-a^2\le0\forall a\)
Gọi số dư đó là r và q ; p lần lượt là thương của phép chia a,b cho m.
Ta có :
a = qm + r và b = pm + r
Do đó a - b = qm + r - pm + r = qm - pm = m.(q - p) chia hết cho m (đpcm).
Ta có:
ab - ba = (10a + b) - (10b + a)
= 10a + b - 10b - a
= 9a - 9b
= 9.(a - b) chia hết cho 9
Ta có: ab - ba= 10a + b -( 10b + a)
= 10a + b - 10b - a
= 9a - 9b
= 9( a - b) chia hết cho 9 với mọi a, b
Vậy hiệu ab - ba (với a lớn hơn hoặc bằng b) bao giờ cũng chia hết cho 9.
\(ab-ba=10a+b-10b+a=9a-9b=9\left(a-b\right)\) chia het cho 9.
Gọi a=nM+d và b=eM+d (n,e E N và n>e)
a-b=nM+d-(eM+d)=nM-eM=M(n-e) chia hết cho M (đpcm)
Gọi d là số dư của a và b
Gọi k là thương của a và M
Gọi n là thương của b và M
suy ra a-b=(k*M+d)-(n*M+d)=(k-n)*M
Mà a-b=(k-n)*M !!! Suy ra a-b chia hết cho M
Câu hỏi của Nguyễn Văn Bình
Nhấn vào link đó!
Chúc bạn học tốt!!!
Ta có : | a+ b| = ( +a ) + ( +b) = | a + b |
Mà |a + b| = | a + b |
=> | a| + |b| = | a+b | ( ĐPCM )