K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

a, Với mọi \(x;y\inℚ\)ta có :

\(x\le|x|\)và \(-x\le|x|;y\le|y|\)và \(-y\le|y|\)

\(\Rightarrow x+y\le|x|+|y|\)

    \(-x-y\le|x|+|y|\)

\(\Rightarrow x+y\ge-\left(|x|+|y|\right)\)

\(\Rightarrow-\left(|x|+|y|\right)\le x+y\le|x|+|y|\)

Vậy \(|x+y|\le|x|+|y|\)

Dấu "=" xảy ra khi xy \(\ge\) 0.
 

25 tháng 6 2019

b,

Theo kết quả câu a, ta có :

\(|\left(x-y\right)+y|\le|x-y|+|y|\)

\(\Rightarrow|x|\le|x-y|+|y|\Rightarrow|x|-|y|\le|x-y|\)

Dấu "=" xảy ra khi xy \(\ge\) 0 và   \(|x|\ge|y|\)
 

25 tháng 11 2015

+ x>/ 0; y>/ 0   

      /x+y/  = /x/ + /y/ = x+y

+ x<0 ; y<0

    /x+y/ = /x/ + /y/ = - x -y  =-( x+y)

+ x >/ 0 ; y </ 0  =>   / x+ y/  = x+y < x < /x/ + /y/

   x</ 0 ; y>/ 0 tương tự

Vậy / x+y/ </ /x/ + /y/

10 tháng 8 2020

a. Ta có :

\(\left|x+y\right|\le\left|x\right|+\left|y\right|\Leftrightarrow\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2=\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2+2\left|xy\right|\ge x^2+2xy+y^2\)

\(\Leftrightarrow2\left|xy\right|\ge2xy\Leftrightarrow\left|xy\right|\ge xy\) ( luôn đúng )

Dấu "=" xảy ra <=> x và y cùng dấu 

22 tháng 3 2019

\(a.\)Ta có:\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(AM-GM:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\left(đpcm\right)\)

\(b.\)Nếu x,y dương thì Áp dụng BĐT Cô-si ta có:\(\frac{3x}{y}+\frac{3y}{x}\ge2\sqrt{\frac{3x}{y}.\frac{3y}{x}}=6\)hay\(\frac{3x}{y}+\frac{3y}{x}\ge6\left(đpcm\right)\)

Nếu x,y âm ta có:\(\frac{3x}{y}+\frac{3y}{x}=\frac{3x^2}{xy}+\frac{3y^2}{xy}\ge2\sqrt{\frac{3x^2}{xy}.\frac{3y^2}{xy}}=6\left(đpcm\right)\)