( 5 . x - 1 ) . ( 2 . x - 1/3 ) = 0
Giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
\(a,\left(x-1\right)\left(x+2\right)\le0\)
th1 :
\(\hept{\begin{cases}x-1\ge0\\x+2\le0\end{cases}\Rightarrow\hept{\begin{cases}x\ge1\\x\le-2\end{cases}}\Rightarrow loai}\)
th2 :
\(\hept{\begin{cases}x-1\le0\\x+2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}\Rightarrow}-2\le x\le1}\)
\(b,\left(x-5\right)\left(3-x\right)>0\)
th1 :
\(\hept{\begin{cases}x-5>0\\3-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>5\\x< 3\end{cases}\Rightarrow}loai}\)
th2 :
\(\hept{\begin{cases}x-5< 0\\3-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 5\\x>3\end{cases}\Rightarrow}3< x< 5}\)
c tương tự nha em
a,2x-3=x+1/2 b,4x-(x+1/2)=2x+(1/2-5) c,2/3-1/3(x-2/3)-1/2(2x+1)=5
2x-x =1/2+3 4x-x-1/2=2x+1/2-5 d,(x+1/2).(x-3/4)=0
x=7/2 4x-x-2x =1/2-5+1/2 \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{cases}}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)
x=-4
e,(2x-1)(3x+1/5)=0
\(\orbr{\begin{cases}2x-1=0\\3x+\frac{1}{5}=0\end{cases}}\orbr{\begin{cases}2x=1\\3x=\frac{1}{5}\end{cases}}\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{15}\end{cases}}\)
f, 4x2-2x=0
Các câu mk chưa làm thì bạn cứ chờ để mk suy nghĩ.
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)
\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)
\(\Leftrightarrow12x-9=29x-145\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x+136=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\left(tm\right)\)
Vậy \(S=\left\{8\right\}\)
\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)
\(\Rightarrow2x-1=2\left(5-3x\right)\)
\(\Leftrightarrow2x-1=10-6x\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x-11=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)
\(\Rightarrow4x-5=3x-2\)
\(\Leftrightarrow4x-5-3x+2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)
\(\Rightarrow15x+25=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\)
\(2,\dfrac{2x-1}{5-3x}=2\)
\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)
\(\Leftrightarrow4x-5-2x+2+2x=0\)
\(\Leftrightarrow4x=3\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
câu c,d,e lạ quá nhưng thui you viết thế nào tui làm thế ấy sai đừng trách
a) 5x(x-1)=x-1
<=> 5x(x-1)-(x-1)=0
<=>(x-1)(5x-1)=0
<=>x-1=0 hoặc 5x-1=0
<=>x=1 hoặc \(\frac{1}{5}\)
b) 2(x+5)-x*2-5x=0
VT=-5(x-2)
<=>-5(x-2)=0
<=>x-2=0
<=>x=2
c)(2x-3)*2-(x-5)*2=0
VT=2(x+2)
<=>2(x+2)=0
<=>x+2=0
<=>x=-2
d) 3x*3-48x=0
VT=-39x
<=>-39x=0
<=>x=0
e) x*3+x*2-4x=4
VT=x
<=>x=4
a)\(\left(x+1\right)\left(x-5\right)< 0\) khi \(\left(x+1\right)\) và \(\left(x-5\right)\) trái dấu.
Chú ý rằng: \(x+1>x-5\) nên \(x+1>0,x-5< 0\). Giải cả hai trường hợp ta có:
\(\hept{\begin{cases}x+1>0\\x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 5\end{cases}}\Leftrightarrow-1< x< 5}\)
b) \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\) khi \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) đồng dấu (\(x-2\ne0,\left(x+\frac{5}{7}\right)\ne0\Leftrightarrow x\ne2;x\ne-\frac{5}{7}\)
+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) dương thì ta có:\(x-2< x+\frac{5}{7}\). Có 2 TH
\(\hept{\begin{cases}x-2>0\\x+\frac{5}{7}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-\frac{5}{7}\end{cases}}}\) . Dễ thấy để thỏa mãn cả hai trường hợp thì x > 2 (1)
+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) âm thì ta có: \(x-2< x+\frac{5}{7}\). Có 2 TH
\(\hept{\begin{cases}\left(x-2\right)< 0\\\left(x+\frac{5}{7}\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -\frac{5}{7}\end{cases}}}\). Dễ thấy để x thỏa mãn cả hai trường hợp thì \(x< -\frac{5}{7}\) (2)
Từ (1) và (2) ta có: \(\hept{\begin{cases}x>2\\x< -\frac{5}{7}\end{cases}}\) thì \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\)
mỗi cái trong ngoặc =0
Bn phải trình bày rõ ràng ra chứ ns thế lm sao mk hiểu đc