Tìm tổng các số nguyên x biết :
a, -5 ≤ x + 8 ≤ 5
b, 2004 ≤ | 2x | ≤ 2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các số là:
(-2004+2004)+...+2005+2006+2007+2008+2009+2010
=12045
ta có:
\(\frac{x+2}{2013}+\frac{x+5}{2010}>\frac{x+8}{2007}+\frac{x+11}{2004}\)
\(\Leftrightarrow\left(\frac{x+2}{2013}+1\right)+\left(\frac{x+5}{2010}+1\right)>\left(\frac{x+8}{2007}+1\right)+\left(\frac{x+11}{2004}+1\right)\)
\(\Leftrightarrow\frac{x+2015}{2013}+\frac{x+2015}{2010}>\frac{x+2015}{2007}+\frac{x+2015}{2004}\)
\(\Leftrightarrow\frac{x+2015}{2013}+\frac{x+2015}{2010}-\frac{x+2015}{2007}-\frac{x+2015}{2004}>0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}\right)>0\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+2015>0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}>0\end{cases}}\\\hept{\begin{cases}x+2015< 0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}< 0\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+2015>0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}>0\end{cases}}\\\hept{\begin{cases}x+2015< 0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}< 0\end{cases}}\end{cases}}\)
b) /x/ - 10 = -3
=> |x|=-3 + 10
|x|=7
=> x = 7 hoặc x= -7
a) 3x – 5 = -7 – 13
3x-5= -20
3x=-20+5
3x=-15
x=-15:3
x=-5
Bài 2:
\(\left|x\right|\le13\)
\(\Rightarrow\left|x\right|\in\left\{0;1;2;...;13\right\}\)
Mà \(x\in Z\)nên \(x\in\left\{-13;-12;...;13\right\}\)
Bài 1:
b) Ta có:
\(x-5\)là ước của \(3x+2\)
\(\Rightarrow3x+2⋮x-5\)
\(\Rightarrow\left(3x-15+17\right)⋮x-5\)
Mà \(3x-15⋮x-5\Rightarrow17⋮x-5\Rightarrow x-5\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)
+) \(x-5=1\Leftrightarrow x=6\)
+) \(x-5=-1\Leftrightarrow x=4\)
+) \(x-5=17\Leftrightarrow x=22\)
+) \(x-5=-17\Leftrightarrow x=-12\)
Vậy \(x\in\left\{6;4;22;-12\right\}\)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
a) \(xy+3x+y=8\)
\(\Leftrightarrow\left(xy+3x\right)+\left(y+3\right)=11\)
\(\Leftrightarrow x\left(y+3\right)+\left(y+3\right)=11\)
\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=11=1.11=\left(-1\right).\left(-11\right)\)
Ta xét các TH sau:
+ \(\hept{\begin{cases}x+1=1\\y+3=11\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=8\end{cases}}\)
+ \(\hept{\begin{cases}x+1=11\\y+3=1\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=-2\end{cases}}\)
+ \(\hept{\begin{cases}x+1=-1\\y+3=-11\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-14\end{cases}}\)
+ \(\hept{\begin{cases}x+1=-11\\y+3=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)
Vậy ta có 4 cặp số (x;y) thỏa mãn: (0;8) ; (10;-2) ; (-2;-14) ; (-12;-4)
a. xy + 3x + y = 8
=> x ( y + 3 ) + ( y + 3 ) = 8 + 3 = 11
=> ( x + 1 ) ( y + 3 ) = 11
x + 1 | y + 3 | x | y |
11 | 1 | 10 | - 2 |
1 | 11 | 0 | 8 |
- 11 | - 1 | - 12 | - 4 |
- 1 | - 11 | - 2 | - 14 |
Vậy các cặp ( x ; y ) thỏa mãn đề bài là ( 10 ; - 2 ) ; ( 0 ; 8 ) ; ( - 12 ; - 4 ) ; ( - 2 ; - 14 )
b. Không rõ đề
\(a) \) \(-5\le x+8\le5\)
\(\Leftrightarrow\)\(x+8\in\left\{\pm5;\pm4;\pm3;\pm2;\pm1;0\right\}\)
\(x\in\left\{-3;-13;-4;-12;-5;-11;-6;-10;-7;-9;-8\right\}\)
\(b) \)
\(2004\le\left|2x\right|\le2010\)
\(\Leftrightarrow\left|2x\right|\in\left\{2004;2006;2008;2010\right\}\)
\(\Leftrightarrow2x\in\left\{\pm2004;\pm2006;\pm2008;\pm2010\right\}\)
\(\Leftrightarrow x\in\left\{\pm1002;\pm1003;\pm1004;\pm1005\right\}\)
đã tick, đã xem và sẽ cảm ơn bn
cảm ơn bn nhìu lm