K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

#Giải:

Biến đổi vế trái:

Vế trái:x(x-y)-y(y-x)

=x2-xy-(y2-xy)

=x2-xy-y2+xy

=(xy-xy)+x2-y2

Vế trái=x2-y2=Vế phải

Vậy:x(x-y)-y(y-x)=x2-y2.

1 tháng 6 2017

Ta có:

\(x.\left(x-y\right)-y.\left(y-x\right)=x^2-xy-y^2+xy=x^2-y^2\)

Vậy \(x.\left(x-y\right)-y.\left(y-x\right)=x^2-y^2\) (đpcm)

Chúc bạn học tốt!!!

23 tháng 9 2021

\(\left(x+y\right)^2+\left(x-y\right)^2=2\left(x^2+y^2\right)\)

\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x^2+2y^2=2\left(x^2+y^2\right)\left(đúng\right)\)

23 tháng 9 2021

 

Vậy đẳng thức đã được chứng minh

23 tháng 9 2021

VT=(x+y)^2+(x-y)^2

=x^2+2xy+y^2+x^2-2xy+y^2

=2x^2+2y^2

=2(x^2+y^2)=VP

Vậy đẳng thức đã được chứng minh

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

31 tháng 10 2021

\(=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)\)

\(=\left(x+y\right)^2\cdot\left(x-y\right)^2\)

25 tháng 9 2018

12 tháng 8 2023

a) Ta có:

\(VT=\left(a-b\right)^2\)

\(=a^2-2ab+b^2\)

\(=a^2+2ab+b^2-4ab\)

\(=\left(a+b\right)^2-4ab=VP\left(dpcm\right)\)

b) Ta có:

\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)

\(=x^2+2xy+y^2+x^2-2xy+y^2\)

\(=\left(x^2+y^2\right)+\left(x^2+y^2\right)\)

\(=2\left(x^2+y^2\right)=VP\left(dpcm\right)\)

9 tháng 3 2018

a) VT = ( a + b + a − b ) ( a + b − a + b ) 4 = 2 a . 2 b 4 = 4 = VP => đpcm.

b) VP = x 2   +   2 xy   +   y 2   +   x 2   –   2 xy   +   y 2   =   2 ( x 2   +   y 2 ) = VT => đpcm.

HQ
Hà Quang Minh
Giáo viên
21 tháng 8 2023

\(a,VT=\left(a^2-1\right)^2+4a^2\\ =a^4-2a^2+1+4a^2\\ =a^4+2a^2+1\\ =\left(a^2+1\right)^2 =VP\\ b,VT=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x^2-y^2\right)\\ =x^2-2xy+y^2+x^2+y^2+2xy+2x^2-2y^2\\ =4x^2=VP\)

3 tháng 8 2023

\(\dfrac{\left(a+b\right)^2-\left(a-b\right)^2}{4}=\dfrac{a^2+2ab+b^2-a^2+2ab-b^2}{4}=\dfrac{4ab}{4}=ab\left(đpcm\right)\)

\(\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2=2\left(x^2+y^2\right)\left(dpcm\right)\)

12 tháng 3 2019

Rút gọn VT

=> VT = VP 

=> Đpcm