K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2023

a) Ta có:

\(VT=\left(a-b\right)^2\)

\(=a^2-2\cdot a\cdot b+b^2\)

\(=a^2-2ab+b^2\)

\(=a^2-4ab+2ab+b^2\)

\(=\left(a^2+2ab+b^2\right)-4ab\)

\(=\left(a+b\right)^2-4ab=VP\)

⇒ Đpcm

b) Ta có:

\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)

\(=x^2+2\cdot x\cdot y+y^2+x^2-2\cdot x\cdot y+y^2\)

\(=x^2+2xy+y^2+x^2-2xy+y^2\)

\(=\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)

\(=2x^2+0+2y^2\)

\(=2x^2+2y^2\)

\(=2\left(x^2+y^2\right)=VP\)

⇒ Đpcm

a: (a-b)^2

=a^2-2ab+b^2

=a^2+2ab+b^2-4ab

=(a+b)^2-4ab

b: (x+y)^2+(x-y)^2

=x^2+2xy+y^2+x^2-2xy+y^2

=2x^2+2y^2

=2(x^2+y^2)

8 tháng 11 2015

câu hỏi tương tự

30 tháng 10 2020

Không có mô tả.

30 tháng 10 2020

a) Ta có: \(VP=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=VP\)(đpcm)

b) Ta có: \(VT=\left(a-b\right)\left(a^2+b^2+ab\right)-\left(a+b\right)\left(a^2+b^2-ab\right)\)

\(=a^3-b^3-\left(a^3+b^3\right)\)

\(=a^3-b^3-a^3-b^3\)

\(=-2b^3=VP\)(đpcm)

a: (a+b+c)^2+a^2+b^2+c^2

=a^2+b^2+c^2+a^2+b^2+c^2+2ab+2ac+2bc

=(a^2+2ab+b^2)+(b^2+2bc+c^2)+(a^2+2ac+c^2)

=(a+b)^2+(b+c)^2+(c+a)^2

b: (x+y)^4-2(x^2+xy+y^2)^2

=(x^2+2xy+y^2)^2-2(x^2+xy+y^2)^2

=x^4+4x^2y^2+y^4+4x^3y+2x^2y^2+4xy^3-2(x^4+x^2y^2+y^4+2x^3y+2x^2y^2+2xy^3)

=-x^4-y^4

=>ĐPCM

22 tháng 8 2020

Bài 1:

a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2=x^2+2xy=x\left(x+2y\right)\)

b) Sửa đề: \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x-y\right)^2\left(x+y\right)^2\)

c) \(x\left(x-3y\right)^2+y\left(y-3x\right)^2=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

\(=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3\)

22 tháng 8 2020

Bài 2:

a) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)

\(=2a\left(a^2+3b^2\right)\)

b) \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(b^2+3a^2\right)\)

4 tháng 9 2021

a) \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)

b) \(\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)=\left(a+b\right)^2-\left(a^2-b^2\right)=a^2+2ab+b^2-a^2+b^2\)

\(=2ab+2b^2=2b\left(a+b\right)\)

c)\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=2b.2a=4ab\) 

a: \(\left(x+y\right)^2-2xy\)

\(=x^2+2xy+y^2-2xy\)

\(=x^2+y^2\)

b: \(\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)\)

\(=\left(a+b\right)\left(a+b-a+b\right)\)

\(=2b\left(a+b\right)\)

c: \(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=4ab\)

Câu 1:

a) Ta có: \(VT=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)

c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)

\(=ab+a+ab+b\)

\(=a+b+2ab\)(1)

Thay ab=1 vào biểu thức (1), ta được:

a+b+2(*)

Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)

Thay ab=1 vào biểu thức (2), ta được:

1+a+b+1=a+b+2(**)

Từ (*) và (**) ta được VT=VP(đpcm)

Câu 2:

Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)

\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)

\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)

\(\Leftrightarrow-11x-22=0\)

\(\Leftrightarrow-11x=22\)

hay x=-2

Vậy: x=-2