1/ (x – 12)^80 + (y + 15)^40 = 0
(x trừ mười hai lũy thừa tám mươi cộng y cộng mười lăm lũy thừa bốn mươi)
2/ Cho x/y = a/b
(x phần y bằng a phần b)
Chứng minh: x – y/x = a – b/a
(x trừ y phần x bằng a trừ b phần a)
3/ so sánh 3^400 và 2^300
(ba lũy thừa bốn trăm và hai lũy thừa ba trăm)
***Mình ghi thành chữ cho các bạn dễ đọc – dễ hiểu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
(\(x-12\))80 + (y + 15)40 = 0
Vì (\(x-12\))80 ≥ 0 ∀ \(x\); (y + 15)40 ≥ 0 ∀ y
Vậy (\(x-12\))80 + (y + 15)40 = 0
⇔ \(\left\{{}\begin{matrix}x-12=0\\y+15=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=12\\y=-15\end{matrix}\right.\)
Vậy \(\left(x;y\right)\) = (12; -15)
Bài 2:
\(\dfrac{x}{y}\) = \(\dfrac{a}{b}\) (đk \(y;b\ne0\))
⇒ \(\dfrac{x}{a}\) = \(\dfrac{y}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}\) = \(\dfrac{y}{b}\) = \(\dfrac{x-y}{a-b}\)
⇒ \(\dfrac{x}{a}\) = \(\dfrac{x-y}{a-b}\)
⇒ \(\dfrac{x-y}{x}\) = \(\dfrac{a-b}{a}\) (đpcm)
\(\frac{15}{26}\cdot\frac{x}{15}=\frac{16}{52}\)
\(\frac{x}{15}=\frac{16}{52}:\frac{15}{26}\)
\(\frac{x}{15}=\frac{8}{15}\)
Ta có: 15/26 . X/15= 16/52
X/15= 16/52: 15/26
X/15= 8/15
=> x =8
\(12+\frac{x}{17}+x=\frac{4}{5}\)
\(\left(\frac{1}{17}+1\right)x=\frac{4}{5}-12\)
\(\frac{18}{17}x=\frac{-56}{5}\)
\(x=\frac{-56}{5}:\frac{18}{17}\)
\(x=\frac{-476}{45}\)
vay \(x=\frac{-476}{45}\)
\(2\frac{1}{2}x+\frac{1}{2}x=27\)
\(\frac{5}{2}x+\frac{1}{2}x=27\)
\(3x=27\)
\(x=9\)
vay \(x=9\)
mình đang cần gấp mà kết quả ko phải số âm ai trả lời nhanh nhất mình k cho nhưng mà phải đúng
hẹn 3 rưỡi ai nhanh nhất mình k mà nhớ là phải đúng
5/8+3/8÷3/11-10
5/8+3/8×11/3-10
5/8+33/24-10
15/24+33/24-10
48/24-10
48/24-10/1
48/24-240/24
-192/24=4/1
Câu 1:
Ta có: \(\left\{{}\begin{matrix}\left(x-12\right)^{80}\ge0\\\left(y+15\right)^{40}\ge0\end{matrix}\right.\Rightarrow\left(x-12\right)^{80}+\left(y+15\right)^{40}\ge0\)
Mà \(\left(x-12\right)^{80}+\left(y+15\right)^{40}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-12\right)^{80}=0\\\left(y+15\right)^{40}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-12=0\\y+15=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=12\\y=-15\end{matrix}\right.\)
Vậy \(x=12;y=-15\)
Câu 2:
Giải:
Đặt \(\dfrac{x}{y}=\dfrac{a}{b}=k\Rightarrow\left\{{}\begin{matrix}x=yk\\a=bk\end{matrix}\right.\)
Ta có: \(\dfrac{x-y}{x}=\dfrac{yk-y}{yk}=\dfrac{y\left(k-1\right)}{yk}=\dfrac{k-1}{k}\) (1)
\(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\) (2)
Từ (1), (2) \(\Rightarrow\dfrac{x-y}{x}=\dfrac{a-b}{a}\left(đpcm\right)\)
Câu 3:
Ta có: \(3^{400}=\left(3^4\right)^{100}=81^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(81^{100}>8^{100}\Rightarrow3^{400}>2^{300}\)
Vậy...
1) Ta có: do 80 va 40 là số chẵn nên
(x – 12)^80 lớn hơn hoặc bằng 0
(y + 15)^40 lớn hươn hoặc bằng 0
Vậy tổng bằng 0 khi và chỉ khi : x-12 = y+15 = 0 <=> x = 12 va y = -15.
2) Đề sai bạn ạ: Phải viết (x – y)/x = (a – b)/a mới đúng
Từ gt: y/x = b/a => (x – y)/x = (a – b)/a ( theo tính chất của tỉ lệ thức )
3) Ta có
3^400 = (3^4)^100) = 81^100
2^300 = (2^3)^100 = 8^100
Vì 81^100>8^100 nên 3^400 > 2^300