K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2021

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow4HB=HC\)

Xét tam giác ABC vuông tại A có đường cao AH:

\(AH^2=BH.HC\)( hệ thức lượng trong tam vuông)

\(\Rightarrow14^2=HB.4HB\Rightarrow HB=7\left(cm\right)\Rightarrow HC=4HB=28\left(cm\right)\Rightarrow BC=HB+HC=35\left(cm\right)\)Xem tam giác ABC vuông tại A có đường cao AH:

\(\left\{{}\begin{matrix}AB^2=HB.BC\\AC^2=HC.BC\end{matrix}\right.\)(Hệ thức lượng trong tam giác vuông)

\(\Rightarrow\left\{{}\begin{matrix}AB^2=7.35\\AC^2=28.35\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\\AC=14\sqrt{5}\end{matrix}\right.\)

Ta có: \(P_{ABC}=AB+AC+BC=7\sqrt{5}+14\sqrt{5}+35=35+21\sqrt{5}\left(cm\right)\)

 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow4\cdot HB^2=14^2=196\)

\(\Leftrightarrow HB^2=49\)

\(\Leftrightarrow HB=7\left(cm\right)\)

\(\Leftrightarrow HC=28\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=7\cdot35=245\\AC^2=28\cdot35=980\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\left(cm\right)\\AC=14\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=21\sqrt{5}+35\left(cm\right)\)

23 tháng 6 2021

tham khảo của đỗ chí dũng câu hỏi của chi khánh

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Lời giải:
 Vì $HB:HC=1:4$ nên đặt $HB=a; HC=4a$ với $a>0$

Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$

$14^2=a.4a$

$4a^2=196$

$a^2=49\Rightarrow a=7$ (do $a>0$)

Khi đó:

$BH=a=7$ (cm); $CH=4a=28$ (cm)

$BC=BH+CH=7+28=35$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{14^2+7^2}=7\sqrt{5}$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{14^2+28^2}=14\sqrt{5}$ (cm)

Chu vi tam giác $ABC$:

$P=AB+BC+AC=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35$ (cm)

 

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Hình vẽ:

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

21 tháng 9 2021

\(HB:HC=2:3\Rightarrow\dfrac{HB}{2}=\dfrac{HC}{3}\Rightarrow HB=\dfrac{2}{3}HC\)

Áp dụng HTL:

\(AH^2=BH\cdot HC\Rightarrow24^2=\dfrac{2}{3}HC^2\Rightarrow HC^2=576\cdot\dfrac{3}{2}=864\\ \Rightarrow HC=12\sqrt{6}\left(cm\right)\\ \Rightarrow HB=\dfrac{2}{3}\cdot12\sqrt{6}=8\sqrt{6}\left(cm\right)\\ \Rightarrow BC=HB+HC=20\sqrt{6}\left(cm\right)\\ \Rightarrow S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot24\cdot20\sqrt{6}=240\sqrt{6}\left(cm^2\right)\)