tam giác MND vuông tại M, đường cao MI. biết NI =4cm, ID = 6cm. Tính ND, MD, MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHNM vuông tại H và ΔMND vuông tại M có
góc N chung
=>ΔHNM đồng dạng với ΔMND
b: ND=căn 3^2+4^2=5cm
MH=3*4/5=2,4cm
NH=3^2/5=1,8cm
c: ME là phân giác
=>NE/DE=MN/MD=3/4
=>NE/3=DE/4
=>S MNE=3/4*S MDE
a, đề sai rồi bạn
b, Xét tam giác MND và tam giác PNM ta có :
ta có : ^N _ chung
^MDN = ^PMN = 900
Vậy tam giác MND ~ tam giác PNM (g.g)
=> MN/PN=ND/MN=> MN^2 = ND.PN
c, \(S_{MNP}=\dfrac{1}{2}MN.PM;S_{MNP}=\dfrac{1}{2}PN.DM\Rightarrow MN.PM=PN.DM\)
\(\Rightarrow MD=\dfrac{MN.PM}{PN}=\dfrac{8.12}{\sqrt{8^2+12^2}}=\dfrac{24\sqrt{13}}{13}cm\)
1/ Hình vẽ: vẽ dễ bạn tự vẽ ha
Có Xét tam giác vuông ABC
\(\widehat{B}+\widehat{C}=90^o\)
\(60^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}=30^o\)
\(sin\widehat{B}=\frac{AC}{BC}=\frac{AC}{20}=sin60^o\)
\(\Rightarrow AC=sin60^o\cdot20=10\sqrt{3}\)(cm)
\(sin\widehat{C}=\frac{AB}{BC}=\frac{AB}{20}=sin30^o\)
\(\Rightarrow AB=sin30^o\cdot20=10\)(cm)
2/
a, ΔMNP cân tại M => MN=MP
=> góc MND=MPD
Xét ΔMND và ΔMPD có:
MN=MP
góc MND=MPD
góc NMD=PMD ( đường phân giác MD )
=> ΔMND = ΔMPD (g.c.g)
b. ΔMND = ΔMPD => góc MDN=MDP = 90 độ
Xét tam giác MDN có góc MDN = 90 độ,ta có:
MN2=MD2+ND2MN2=MD2+ND2
=> 132=122+ND2132=122+ND2
=> ND2=25ND2=25
=> ND = 5
c. Xét ΔHMD và ΔKMD có:
MD chung
góc HMD=KMD
góc MHD=MKD = 90 độ
=> ΔHMD = ΔKMD ( cạnh huyền-góc nhọn)
d. Xét tam giác HDN và tam giác KDP có:
góc HND=KPD
góc NHD=PKD = 90 độ
ND=DP ( do ΔMND = ΔMPD)
=> tam giác HDN = tam giác KDP
=> HD=KD (1)
Có: MN=MH+HN
MP=MK+KP
mà MN=MP ( do ΔMND = ΔMPD )
NH=KP
=> MH=MK ( 2)
Từ (1) (2) =>
a) Xét tam giác MND có:
\(MN^2+MD^2=10^2+24^2=676\)
\(DN^2=26^2=676\)
\(\Rightarrow MN^2+MD^2=DN^2\)
=> Tam giác MND vuông tại M(Pytago đảo)
b) Áp dụng HTL:
\(MI.DN=MN.MD\)
\(\Rightarrow MI=\dfrac{MN.MD}{DN}=\dfrac{10.24}{26}=\dfrac{120}{13}\left(cm\right)\)
c) Xét tứ giác MKID có:
\(\widehat{KMD}=\widehat{MKI}=\widehat{MDI}=90^0\)
=> Tứ giác MKID là hình chữ nhật
=> HK=MI
Áp dụng hệ thức lượng trong tam giác vuông có:
\(MD^2=ND.DP\)\(\Rightarrow ND=\dfrac{MD^2}{DP}=\dfrac{12^2}{16}=9cm\)
\(\dfrac{1}{DK^2}=\dfrac{1}{ND^2}+\dfrac{1}{DM^2}=\dfrac{25}{1296}\)
\(\Rightarrow DK=\dfrac{36}{5}\) (cm)
Vậy...
a) Xét ΔMNP và ΔHMP có:
Góc MPN chung
Góc NMP = góc MHP (= \(90^o\))
⇒ ΔMNP ~ ΔHMP (g.g)
b) Áp dụng định lí Pytago vào Δ vuông MNP:
\(MP^2=NP^2-MN^2\)
\(MP^2=10^2-6^2\)
\(MP^2=64\)
⇒ MP = 8
Xét ΔMNP có ND là phân giác ⇒ \(\dfrac{MD}{MN}=\dfrac{DP}{NP}\)
hay \(\dfrac{MD}{6}=\dfrac{DP}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{MD}{6}=\dfrac{DP}{10}=\dfrac{MD+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
⇒ \(\dfrac{DP}{10}=\dfrac{1}{2}\) ⇒ DP = \(\dfrac{10}{2}\) = 5
M N I H 25cm 144 cm
Tam giác MNI vuông tại M, áp dụng hệ thức, ta có:
\(MH^2=NH.HI=25.144=3600\)
\(\Rightarrow MH=\sqrt{3600}=60\left(cm\right)\)
Vì H nằm giữa N và I nên: \(NH+HI=25+144=NI=169\left(cm\right)\)
Tam giác MNI vuông tại M, áp dụng hệ thức, ta lại có:
\(MN^2=NH.NI=25.169=4225\Rightarrow MN=\sqrt{4225}=65\left(cm\right)\)
\(MI^2=HI.NI=144.169=24336\Rightarrow MI=\sqrt{24336}=156\left(cm\right)\)
Vậy .....
Xét △INM và △MND có:
\(\hat{N}\text{ }chung\)
\(\hat{MIN}=\hat{NMD}=90\text{°}\)
⇒△INM ∼ △MND (g.g)
\(ND=NI+DI=10\left(cm\right)\)
\(\Rightarrow\dfrac{MN}{ND}=\dfrac{IN}{MN}\Rightarrow MN=\sqrt{ND.IN}=\sqrt{40}\left(cm\right)\)
Áp dụng đ/l Pytago \(\Rightarrow MD=\sqrt{10^2-\sqrt{40}^2}=\sqrt{60}\left(cm\right)\)
Vậy: \(\begin{matrix}ND=10cm\\MN=\sqrt{40}cm\\MD=\sqrt{60}cm\end{matrix}\)