Tìm \(x\), biết :
a) \(4x^2-4x=-1\)
b) \(8x^3+12x^2+6x+1=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4x^2 - 4x = -1
\(\Leftrightarrow\)4x^2 - 4x + 1 = 0
\(\Leftrightarrow\)(2x-1)2 =0
\(\Leftrightarrow\)2x - 1 = 0
\(\Leftrightarrow\)x = 1/2
b, \(\Leftrightarrow\)( 2x + 1)^3 = 0
\(\Leftrightarrow\)2x + 1 = 0
\(\Leftrightarrow\)x = -1/2
đúng thì
a) \(4x^2-4x=-1\)
\(\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
b) \(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
a,4x^2-4x+1=0
4x^2-2x-2x+1=0
2x (2x-1)-(2x-1)=0
(2x-1)(2x-1)=0
(2x-1)^2=0
=>2x-1=0 <=> x=1/2
Lời giải:
PT $\Leftrightarrow 8x^3-16x^2+6x+2=0$
$\Leftrightarrow (8x^3-8x^2)-(8x^2-8x)-(2x-2)=0$
$\Leftrightarrow 8x^2(x-1)-8x(x-1)-2(x-1)=0$
$\Leftrightarrow (x-1)(8x^2-8x-2)=0$
$\Leftrightarrow 2(x-1)(4x^2-4x-1)=0$
$\Leftrightarrow x-1=0$ hoặc $4x^2-4x-1=0$
Nếu $x-1=0\Leftrightarrow x=1$
Nếu $4x^2-4x-1=0$
$\Leftrightarrow (2x-1)^2-2=0$
$\Leftrightarrow (2x-1-\sqrt{2})(2x-1+\sqrt{2})=0$
$\Leftrightarrow x=\frac{1\pm \sqrt{2}}{2}$
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
a, x2 - 10x = -25 b, 4x2 - 4x = -1 c, 8x3 +12x2 +6x+1=0
=>x2-10x+25=0 =>(2x)2-2.2x.1+1=0 =>(2x+1)3=0
=>(x-5)2=0 =>(2x-1)2=0 =>2x+1=0
=>x-5=0 =>2x-1=0 =>x = -1/2
=>x=5 =>x=1/2
Ta co 4x2 - 4x = -1
=> 4x2 - 4x + 1 = 0
<=> (2x - 1)2 = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = \(\frac{1}{2}\)
a) \(4x^2-4x=-1\)
\(\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
b) \(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right).\left(8x^2+8x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\left(1\right)\\8x^2+8x+2=0\left(2\right)\end{cases}}\)
Giải (1) :
\(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Giải (2) :
\(8x^2+8x+2=0\)
\(\Leftrightarrow\left(\sqrt{8}x+\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\sqrt{8}x+\sqrt{2}=0\)
\(\Leftrightarrow\sqrt{8}x=-\sqrt{2}\)
\(\Leftrightarrow x=-\frac{\sqrt{2}}{\sqrt{8}}=-\frac{1}{2}\)
Từ (1) ; (2)
\(\Rightarrow x=-\frac{1}{2}\)
a, \(4x^2-4x=-1\Leftrightarrow4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
b, \(8x^3+12x^2+6x+1=0\Leftrightarrow\left(2x+1\right)^3=0\Leftrightarrow x=-\frac{1}{2}\)
a) \(4x^2-4x=-1\)
\(\Leftrightarrow4x\left(x-1\right)=-1\)
\(\Leftrightarrow4x=-1\) hoặc \(x-1=-1\)
\(\Leftrightarrow x=\dfrac{-1}{4}\) hoặc \(x=0\)
Vậy S={\(\dfrac{-1}{4};0\)}
\(\text{a) }4x^2-4x=-1\\ \Leftrightarrow4x^2-4x+1=0\\ \Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\\ \Leftrightarrow\left(2x-1\right)^2=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\\ \text{Vậy }x=\dfrac{1}{2}\\ \)
\(\text{ b) }8x^3+12x^2+6x+1=0\\ \Leftrightarrow\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3=0\\ \Leftrightarrow\left(2x+1\right)^3=0\\ \Leftrightarrow2x+1=0\\ \Leftrightarrow2x=-1\\ \Leftrightarrow x-\dfrac{1}{2}\\ \text{Vậy }x=-\dfrac{1}{2}\)