K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Ta có:

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

\(=1+\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)

Đặt \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\) ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

\(.....................\)

\(\dfrac{1}{50^2}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

Cộng các vế trên với nhau ta được:

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(\Rightarrow B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow B< 1-\dfrac{1}{50}< 1\)

\(\Rightarrow1+B< 1+1=2\) Hay \(A< 2\)

Vậy \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< 2\) (Đpcm)

24 tháng 4 2017

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\\ =1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\\ \Rightarrow A< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}=1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=1+1-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)

13 tháng 5 2017

Ta có :

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+......................+\dfrac{1}{50^2}\)

Ta thấy :

\(\dfrac{1}{1^2}=1\)

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

............................

\(\dfrac{1}{50^2}< \dfrac{1}{49.50}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....................+\dfrac{1}{49.50}\)

\(\Rightarrow A< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...........+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< 1+1-\dfrac{1}{50}\)

\(\Rightarrow A< 2-\dfrac{1}{50}< 2\)

\(\Rightarrow A< 2\rightarrowđpcm\)

27 tháng 4 2017

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}< 1+\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{50^2-1}\)

\(\Leftrightarrow A< 1+\dfrac{1}{3}+\dfrac{1}{8}+...+\dfrac{1}{2499}\)

\(\Leftrightarrow A< 1+\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+...++\dfrac{1}{48}-\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(\Leftrightarrow A< 1+\dfrac{1}{2}\cdot\left(1-\dfrac{1}{51}+\dfrac{1}{2}-\dfrac{1}{50}\right)\)

\(\Leftrightarrow A< 1+\dfrac{1}{2}\cdot\left(\dfrac{50}{51}+\dfrac{24}{50}\right)\)

Nhận xét \(\dfrac{50}{51}< 1;\dfrac{24}{50}< 1\Rightarrow A< 1+\dfrac{1}{2}\cdot\left(\dfrac{50}{51}+\dfrac{24}{50}\right)< 1+\dfrac{1}{2}\cdot\left(1+1\right)=2\)

Vậy A<2

27 tháng 4 2017

Nhận xét: \(\dfrac{1}{1^2}=1\)

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

...........

\(\dfrac{1}{50^2}< \dfrac{1}{49.50}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)

\(\Rightarrow A< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< 1+1-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)

Vậy A < 2

28 tháng 2 2023

Câu b hướng làm đó là tách con 1/3 và 1/2 ra thành 50 phân số giống nhau. E tách 1/3=50/150 rồi so sánh 1/101, 1/102,...,1/149 với 1/150. Còn vế sau 1/2=50/100 tách tương tự rồi so sánh thôi

AH
Akai Haruma
Giáo viên
28 tháng 2 2023

2a.

$\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}$
$=1-\frac{1}{50}< 1$ (đpcm)

18 tháng 4 2023

A = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.....+ \(\dfrac{1}{50^2}\)

A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\)+......+\(\dfrac{1}{50.50}\)

      1 = 1

 \(\dfrac{1}{2.2}\)  < \(\dfrac{1}{1.2}\)

  \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)

..................

\(\dfrac{1}{50.50}\) < \(\dfrac{1}{49.50}\)

Cộng vế với vế với ta có:

A = \(1+\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\)+....+ \(\dfrac{1}{50.50}\) < 1 + \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+....+\(\dfrac{1}{49.50}\)

A < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+......+ \(\dfrac{1}{49}\)\(\dfrac{1}{50}\)

A < 2 - \(\dfrac{1}{50}\) < 2 ( đpcm)

 

19 tháng 4 2017

\(\)Ta có: \(\dfrac{1}{1^2}=1;\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{50^2}< \dfrac{1}{49.50}\)

\(\Rightarrow A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(\Rightarrow A< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< 1+\dfrac{99}{100}\)

\(\Rightarrow A< 1\dfrac{99}{100}< 1\dfrac{100}{100}=2\)

\(\Rightarrow A< 2\left(đpcm\right)\)

4 tháng 5 2017

1)Ta thấy: \(\dfrac{1}{n^2}=\dfrac{1}{n.n}< \dfrac{1}{\left(n-1\right)n}\)

=>A=\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}...+\dfrac{1}{50^2}< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49.50}\)

A<\(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)

Vậy A<2

2)Ta có:2S=6+3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^8}\)

2S-S=(6+3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^8}\))-(3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^9}\))

=>S=6-\(\dfrac{3}{2^9}=\dfrac{6.2^9-3}{2^9}\)

Vậy S=\(\dfrac{6.2^9-3}{2^9}\)

4 tháng 5 2017

Các bạn cố giúp mink nhé mai mình phải nộp rồi