K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

\(\)Ta có: \(\dfrac{1}{1^2}=1;\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{50^2}< \dfrac{1}{49.50}\)

\(\Rightarrow A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(\Rightarrow A< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< 1+\dfrac{99}{100}\)

\(\Rightarrow A< 1\dfrac{99}{100}< 1\dfrac{100}{100}=2\)

\(\Rightarrow A< 2\left(đpcm\right)\)

13 tháng 5 2017

Ta có :

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+......................+\dfrac{1}{50^2}\)

Ta thấy :

\(\dfrac{1}{1^2}=1\)

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

............................

\(\dfrac{1}{50^2}< \dfrac{1}{49.50}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....................+\dfrac{1}{49.50}\)

\(\Rightarrow A< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...........+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< 1+1-\dfrac{1}{50}\)

\(\Rightarrow A< 2-\dfrac{1}{50}< 2\)

\(\Rightarrow A< 2\rightarrowđpcm\)

27 tháng 4 2017

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}< 1+\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{50^2-1}\)

\(\Leftrightarrow A< 1+\dfrac{1}{3}+\dfrac{1}{8}+...+\dfrac{1}{2499}\)

\(\Leftrightarrow A< 1+\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+...++\dfrac{1}{48}-\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(\Leftrightarrow A< 1+\dfrac{1}{2}\cdot\left(1-\dfrac{1}{51}+\dfrac{1}{2}-\dfrac{1}{50}\right)\)

\(\Leftrightarrow A< 1+\dfrac{1}{2}\cdot\left(\dfrac{50}{51}+\dfrac{24}{50}\right)\)

Nhận xét \(\dfrac{50}{51}< 1;\dfrac{24}{50}< 1\Rightarrow A< 1+\dfrac{1}{2}\cdot\left(\dfrac{50}{51}+\dfrac{24}{50}\right)< 1+\dfrac{1}{2}\cdot\left(1+1\right)=2\)

Vậy A<2

27 tháng 4 2017

Nhận xét: \(\dfrac{1}{1^2}=1\)

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

...........

\(\dfrac{1}{50^2}< \dfrac{1}{49.50}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)

\(\Rightarrow A< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< 1+1-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)

Vậy A < 2

24 tháng 4 2017

Ta có:

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

\(=1+\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)

Đặt \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\) ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

\(.....................\)

\(\dfrac{1}{50^2}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

Cộng các vế trên với nhau ta được:

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(\Rightarrow B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow B< 1-\dfrac{1}{50}< 1\)

\(\Rightarrow1+B< 1+1=2\) Hay \(A< 2\)

Vậy \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< 2\) (Đpcm)

24 tháng 4 2017

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\\ =1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\\ \Rightarrow A< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}=1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=1+1-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)

4 tháng 5 2017

1)Ta thấy: \(\dfrac{1}{n^2}=\dfrac{1}{n.n}< \dfrac{1}{\left(n-1\right)n}\)

=>A=\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}...+\dfrac{1}{50^2}< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49.50}\)

A<\(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)

Vậy A<2

2)Ta có:2S=6+3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^8}\)

2S-S=(6+3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^8}\))-(3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^9}\))

=>S=6-\(\dfrac{3}{2^9}=\dfrac{6.2^9-3}{2^9}\)

Vậy S=\(\dfrac{6.2^9-3}{2^9}\)

4 tháng 5 2017

Các bạn cố giúp mink nhé mai mình phải nộp rồi

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

25 tháng 3 2017

Ta có:

A=\(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)

A<\(1+\dfrac{1}{2.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

A<\(1+\dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

A<\(\dfrac{5}{4}\)+\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{99}-\dfrac{1}{100}\)

A<\(\dfrac{5}{4}+\dfrac{1}{2}-\dfrac{1}{100}\)

A<\(\dfrac{5}{4}+\dfrac{49}{100}\)

A<\(\dfrac{174}{100}\)<\(\dfrac{7}{4}\)

=>A<\(\dfrac{7}{4}\)

Tick giùm mink nha :D

26 tháng 4 2017

1/2^2<1/2.3,1/3^2<1/2.3,.....,1/100^2<1/99.100

A<1+1/2.3+1/3.4+....+1/99.100

A<1+1/2-1/3+1/3-1/4+1/4-1/5+....+1/99-1/100

A<1+1/2-1/100

A<3/2-1/100 mà 3/2=6/4

A<6/4-1/100<7/4

A<7/4