cho cac so duong x,y,z<=1 CMR x/yz+1+y/xz+1+z/xy+1<=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề :
Cho \(0\le x\le y\le z\le1\) CMR : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2\)
Giải :
Từ \(x\le y\le1\Rightarrow\hept{\begin{cases}x-1\le0\\y-1\le0\end{cases}\Rightarrow\left(x-1\right)\left(y-1\right)\ge0}\)
\(\Rightarrow xy-x-y+1\ge0\Rightarrow xy+1\ge x+y\)
\(\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\)\(\left(x\ge0\right)\)
Mà \(\frac{z}{x+y}\le\frac{2z}{x+y+z}\) nên \(\frac{z}{xy+1}\le\frac{2z}{x+y+z}\left(1\right)\)
CM tương tự ta cũng có :\(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{2x}{x+y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{2y}{x+y+z}\left(3\right)\end{cases}}\)
Cộng các vế của (1) ; (2) ; (3) lại ta được :
\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (ĐPCM)
\(\)
Ta có x+y+z=6 => x+y=6-z
xy+yz+zx=9 => xy+z(x+y)=9
=> xy=9-z(x+y)=9-z(6-z)
Ta cũng có: (x+y)2 >= 4xy
<=> (6-z)2 >=4[9-z(6-z)]
<=> 36-12z+z2 >= 4[9-6z+z2]
<=> 36-12z+z2 >= 36-24z+4z2
<=> 3z2-12z =<0
<=> 0 =< x =< 4
Vai trò của x;y;z như nhau nên ta có: 0 =< x,y,z =<4
Từ đó ta có: x-1 =<3
-2 =< y-2 =< 2 => (y-2)2 =<4
-3 =< z-3 =<1 => (z-3)4 =<81
Khi đó (x-1)+(y-2)2+(z-3)4 =< 88
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}x=0;y=0;z=0\\x=4;y=4;z=0\end{cases}}\)(ktm điều kiện bài toán)
Vậy (x-1)+(y-2)2+(z-3)4<88
a) Mình làm lại , mk thiếu dấu
Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)
Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
x + y + z ≥ xy + yz + zx
⇔ x + y + z - xy - yz - xz ≥ 0 ( *)
Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)
Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)
Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :
( x - 1)( y - 1)( z - 1) ≤ 0
⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0
⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)
Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)
Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)
Từ ( * ; **) ⇒ đpcm