Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mình làm lại , mk thiếu dấu
Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)
Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
x + y + z ≥ xy + yz + zx
⇔ x + y + z - xy - yz - xz ≥ 0 ( *)
Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)
Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)
Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :
( x - 1)( y - 1)( z - 1) ≤ 0
⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0
⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)
Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)
Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)
Từ ( * ; **) ⇒ đpcm
Sửa lại đề :
Cho \(0\le x\le y\le z\le1\) CMR : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2\)
Giải :
Từ \(x\le y\le1\Rightarrow\hept{\begin{cases}x-1\le0\\y-1\le0\end{cases}\Rightarrow\left(x-1\right)\left(y-1\right)\ge0}\)
\(\Rightarrow xy-x-y+1\ge0\Rightarrow xy+1\ge x+y\)
\(\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\)\(\left(x\ge0\right)\)
Mà \(\frac{z}{x+y}\le\frac{2z}{x+y+z}\) nên \(\frac{z}{xy+1}\le\frac{2z}{x+y+z}\left(1\right)\)
CM tương tự ta cũng có :\(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{2x}{x+y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{2y}{x+y+z}\left(3\right)\end{cases}}\)
Cộng các vế của (1) ; (2) ; (3) lại ta được :
\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (ĐPCM)
\(\)
thêm x2 + y2 + z2 = 1 nha
HT nha vinh
mình ko chắc nó đúng,bạn tham khảo nhé
-nếu x=y=z <=> xy+yz+zx=x2+y2+z2
<=>x2+y2+z2=xy+yz+zx 1
-nếu x2+y2+z2=xy+yz+zx <=> 2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>(x-y)2+(y-z)2+(z-x)2=0 (hằng đẳng thức)
=>x=y=z 2
Từ 1 và 2=>x2+y2+z2=xy+yz+zx <=>x=y=z