Chứng minh aaabbb luôn chia hết cho 37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aaabbb=111.a.1000+111.b=37.(3.a.1000)+37.(3.b)
=.aaabbb chia het cho 37
**** nhe
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.( a.3.1000 + b.3 ) chia hết cho 37
aaabbb=aaa000+bbb
=aaa000+111.b
vi 111cia het cho37nen aaa000+111.b chia het cho 37suy ra aaabbbcia het cho 37
1. vì 53! và 51! đều chứa thừa số 29 nên 53! và 51! đều chia hết cho 29 => 53! - 51! : hết cho 29
2. a. aaabbb = 111000a + 111b
vì 111000a và 111b đều chia hết cho 37 nên 111000a + 111b : hết cho 37 => aaabbb : hết cho 37
b. ababab = 10101 . ab mà 10101 : hết cho 7 => ababab : hết cho 7
a, aaabbb = 111000a + 111b đều chia hết cho 37 nên 111000a + 111b chia hết cho 37 . Suy ra aaabbb chia hết cho 37
a) aaabbb = aaa000 + bbb
= a . 111 . 1000 + b . 111
= a . 3 . 37 . 1000 + b . 3 . 37
= 37 ( a . 3 . 1000 + b . 3 ) chia hết cho 37
Vậy aaabbb chia hết cho 37
b) abab - baba
= ab . 101 - ba . 101
= 101 ( ab - ba )
= 101 ( 10 + b - 10b + a )
= 101 ( 10a - a + b - 10b )
= 101 ( 9a - 9b )
= 101 . 9 ( a - b ) chia hết cho 9 và 101
Vậy abab - baba chia hết cho 9 và 101
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) ⋮ 37
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) ⋮ 37
ta có : aaabbb=aaa.1000+bbb=a.111.1000+b.111 =(a.1000+b).111 Mà 111chia hết cho 37 =>(a.1000+b).111chia hết cho 37 Vậy aaabbb luôn chia hết cho 37