Cho 2001 điểm bất kì trên mặt phẳng, biết rằng cứ 3 điểm bất kì trong số 2001 điểm nói trên bao giờ cũng có 2 điểm mà khoảng cách giữa chúng nhỏ hơ 1 đơn vị dài.
CMR: có ít nhất 1001 điểm trong số 2001 điểm nói trên nằm trong 1 đường tròn bán kính bằng 1.
Nếu khoảng cách giữa hai điểm bất kì đều bé hơn 1 thì ta chỉ cần chọn 1 điểm \(A\) bất kì trong số 2001 điểm đã cho, rồi vẽ đường tròn \(\left(A,1\right)\), đường tròn này sẽ chứa cả 2000 điểm còn lại, do đó ta có đpcm.
Gỉa sử rằng có hai điểm \(A,B\) trong số 2001 điểm đã cho mà có khoảng cách lớn hơn \(1\). Vẽ các đường tròn tâm là \(A,B\) và bán kính cùng là \(1\). Ta còn lại 1999 điểm. Mỗi điểm \(C\) bất kì trong số 1999 điểm ấy, theo giả thiết \(AB,AC,BC\) phải có một đoạn có độ dài bé hơn \(1\). Vì \(AB>1\) nên \(AC