K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Ta có: \(a+b+c=0\Rightarrow c=-\left(a+b\right)=-a-b\)

Đặt \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(x\right)=ax^2+bx-a-b\)

\(\Rightarrow f\left(x\right)=ax^2-ax+ax+bx-a-b\)

\(\Rightarrow f\left(x\right)=\left(ax^2-ax\right)+\left(ax-a\right)+\left(bx-b\right)\)

\(\Rightarrow f\left(x\right)=ax\left(x-1\right)+a\left(x-1\right)+b\left(x-1\right)\)

\(\Rightarrow f\left(x\right)=\left(x-1\right).\left(ax+a+b\right)\)

\(f\left(x\right)=0\Rightarrow\left(x-1\right).\left(ax+a+b\right)=0\)

\(\Rightarrow x-1=0\) hoặc \(ax+a+b=0\)

+) \(x-1=0\Rightarrow x=1\)

+) \(ax+a+b=0\)

\(\Rightarrow a\left(x+1\right)=-b\)

\(\Rightarrow x=\dfrac{-b}{a}-1\)

\(\Rightarrow f\left(x\right)\) sẽ có 1 nghiệm là \(x=1\)

\(\Rightarrowđpcm\)

6 tháng 4 2017

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(f\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c=0\)

Vậy nếu \(a+b+c=1\) thì \(x=1\) là là một nghiệm của đa thức \(ax^2+bx+c\)

7 tháng 5 2021

$\rm x=1\\\to ax^2+bx+c=a+b+c=0\\\to x=1\,\là \,\,no \,\pt$

7 tháng 5 2021

`x=-1=>ax^2+bx+c=a-b+c=0`

21 tháng 1 2017

Thay x = -1 vào đa thức ax2 + bx + c, ta có:

a.(-1)2 + b.(-1) + c = a – b + c

Vì a – b + c = 0 ⇒ a.(-1)2 + b.(-1) + c = a – b + c = 0

Vậy x = -1 là nghiệm của đa thức ax2 + bx + c khi a – b + c = 0

23 tháng 11 2017

Thay x = 1 vào đa thức ax2 + bx + c, ta có:

a.12 + b.1 + c = a + b + c

Vì a + b + c = 0 nên a.12 + b.1 + c = a + b + c = 0

Vậy x = 1 là nghiệm của đa thức ax2 + bx + c khi a + b + c = 0

1 tháng 4 2018

Thay x = 1 vào đa thức ax2 + bx + c, ta có:

a.12 + b.1 + c = a + b + c

Vì a + b + c = 0 nên a.12 + b.1 + c = a + b + c = 0

Vậy x = 1 là nghiệm của đa thức ax2 + bx + c khi a + b + c = 0

1 tháng 4 2018

Thay x = 1 vào đa thức ax2 + bx + c, ta có:

a.12 + b.1 + c = a + b + c

Vì a + b + c = 0 nên a.12 + b.1 + c = a + b + c = 0

Vậy x = 1 là nghiệm của đa thức ax2 + bx + c khi a + b + c = 0

a: f(1)=a+b+c=0

=>x=1 là nghiệm

b: Vì 5-6+1=0

nên f(x)=5x^2-6x+1 có một nghiệm là x=1

30 tháng 8 2017

* Chứng minh:

Phương trình a x 2   +   b x   +   c   =   0 có hai nghiệm  x 1 ;   x 2

⇒ Theo định lý Vi-et: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó : a.(x – x1).(x – x2)

= a.(x2 – x1.x – x2.x + x1.x2)

= a.x2 – a.x.(x1 + x2) + a.x1.x2

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

=   a . x 2   +   b x   +   c   ( đ p c m ) .

* Áp dụng:

a)  2 x 2   –   5 x   +   3   =   0

Có a = 2; b = -5; c = 3

⇒ a + b + c = 2 – 5 + 3 = 0

⇒ Phương trình có hai nghiệm Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)  3 x 2   +   8 x   +   2   =   0

Có a = 3; b' = 4; c = 2

⇒  Δ ’   =   4 2   –   2 . 3   =   10   >   0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

29 tháng 11 2018

3x2 + 8x + 2 = 0

Có a = 3; b' = 4; c = 2

⇒ Δ’ = 42 – 2.3 = 10 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

4 tháng 6 2017

* Chứng minh:

Phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2

⇒ Theo định lý Vi-et: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó : a.(x – x1).(x – x2)

= a.(x2 – x1.x – x2.x + x1.x2)

= a.x2 – a.x.(x1 + x2) + a.x1.x2

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

= a.x2 + bx + c (đpcm).

* Áp dụng:

a) 2x2 – 5x + 3 = 0

Có a = 2; b = -5; c = 3

⇒ a + b + c = 2 – 5 + 3 = 0

⇒ Phương trình có hai nghiệm Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

14 tháng 4 2017

thay vào bthg
ta có: a(-1)2+b(-1)+c
=a-b+c
mà a-b+c=0 (đề baì)
=> nếu a-b+c =0 thì x=-1 là nghiệm của đt ax2+bx+c

28 tháng 6 2020

x = ( -1 )

bạn nhé