Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20
<=> 5x = 22
<=> x = 22/5
b) (8x - 3)(3x+ 2) - (4x + 7)(x + 4) = (2x + 1)(5x- 1)
<=> 24x2 + 7x - 6 - 4x2 - 23x - 28 = 10x2 + 3x - 1
<=> 10x2 - 19x -33 = 0
<=> 10x2 - 30x + 11x - 33 = 0
<=> (10x + 11)(x - 3) = 0
<=> \(\orbr{\begin{cases}10x+11=0\\x-3=0\end{cases}}\) <=> \(\orbr{\begin{cases}x=-\frac{11}{10}\\x=3\end{cases}}\)
c) 2x2 + 3(x - 1)(x + 1) = 5x(x + 1)
<=> 2x2 + 3x2 - 3 = 5x2 + 5x
<=> 5x = -3
<=> x = -3/5
Ta có: (y - 5)(y + 8) - (y + 4)(y - 1) = y2 + 3y - 40 - y2 - 3y + 4 = -36
=> biểu thức ko phụ thuộc vào biến y
b) y4 - (y2 - 1)(y2 + 1) = y4 - y4 + 1 = 1
=> biểu thức ko phụ thuộc vào biến y
c) (3x- 5)(2x + 11) - (2x + 3)(3x + 7) = 6x2 + 23x - 55 - 6x2 - 23x - 21 = -76
=> biểu thức ko phụ thuộc vào biến x
d) (x - 5)(2x + 3) - 2x(x - 3) + x + 7 = 2x2 - 7x - 15 - 2x2 + 6x + x + 7 = -8
=> biểu thức ko phụ thuộc vào biến x
a: \(f\left(x\right)=6x^4-3x^2-5\)
\(g\left(x\right)=x^4+3x^3-5x^2-4x+2\)
\(f\left(x\right)+g\left(x\right)=7x^4+3x^3-8x^2-4x-3\)
b: \(f\left(x\right)-g\left(x\right)=5x^4-3x^3+2x^2+4x-7\)
c: \(f\left(1\right)=6-3-5=-2\)
\(g\left(2\right)=16+3\cdot8-5\cdot4-4\cdot2+2\)
=16+24-20-16+2
=40-20-16+2
=20-16+2
=4+2=6
Bài 1:
a)
\(F+G+H=(x^3-2x^2+3x+1)+(x^3+x-1)+(2x^2-1)\)
\(=2x^3+4x-1\)
b)
\(F-G+H=0\)
\(\Leftrightarrow (x^3-2x^2+3x+1)-(x^3+x-1)+(2x^2-1)=0\)
\(\Leftrightarrow 2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Bài 2:
a)
\(A=-4x^5-x^3+4x^2-5x+9+4x^5-6x^2-2\)
\(=(-4x^5+4x^5)-x^3+(4x^2-6x^2)-5x+(9-2)\)
\(=-x^3-2x^2-5x+7\)
\(B=-3x^4-2x^3+10x^2-8x+5x^3\)
\(=-3x^4+(5x^3-2x^3)+10x^2-8x\)
\(=-3x^4+3x^3+10x^2-8x\)
b)
\(P=A+B=(-x^3-2x^2-5x+7)+(-3x^4+3x^3+10x^2-8x)\)
\(=-3x^4+(3x^3-x^3)+(10x^2-2x^2)-(8x+5x)+7\)
\(=-3x^4+2x^3+8x^2-13x+7\)
\(P(-1)=-3.(-1)^4+2(-1)^3+8(-1)^2-12(-1)+7=23\)
\(Q=A-B=(-x^3-2x^2-5x+7)-(-3x^4+3x^3+10x^2-8x)\)
\(=3x^4-(x^3+3x^3)-(2x^2+10x^2)+(8x-5x)+7\)
\(=3x^4-4x^3-12x^2+3x+7\)
bài nay đơn giàn thôi bạn chỉ can thay thẳng x=1 vào đa thức P(x) cứ lam theo thế là ra
a) \(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
\(B\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+4\)
b) \(A\left(x\right)+B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6+\left(-x^5+2x^4-2x^3+3x^2-x+4\right)\)
\(A\left(x\right)+B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6-x^5+2x^4-2x^3+3x^2-x+4\)
\(A\left(x\right)+B\left(x\right)=4x^5-2x^4-4x^3+7x^2+2x+10\)
Lại có: \(A\left(x\right)-B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6-\left(-x^5+2x^4-2x^3+3x^2-x+4\right)\)
\(A\left(x\right)-B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6+x^5-2x^4+2x^3-3x^2+x-4\)
\(A\left(x\right)-B\left(x\right)=6x^5-6x^4+x^2+4x+2\)
c) Giả sử \(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6=0\)
\(\Rightarrow A\left(x\right)=5x^5+5x^4-9x^4-9x^3+7x^3+7x^2-3x^2-3x+6x+6=0\)
\(\Rightarrow A\left(x\right)=5x^4\left(x+1\right)-9x^3\left(x+1\right)+7x^2\left(x+1\right)-3x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Rightarrow A\left(x\right)=\left(x+1\right)\left(5x^4-9x^3+7x^2-3x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\5x^4-9x^3+7x^2-3x+6=0\end{cases}}\Rightarrow x=-1\)
Vậy x = -1 là một nghiệm của A(x)
Thay x = -1 vào B(x), nếu kết quả khác 0 thì đó không phải là nghiệm của B(x)
a: f(1)=a+b+c=0
=>x=1 là nghiệm
b: Vì 5-6+1=0
nên f(x)=5x^2-6x+1 có một nghiệm là x=1