K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

-Áp dụng BĐT Caushy Schwarz ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{1}=9\)

-Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

NV
18 tháng 9 2021

\(\dfrac{1}{\sqrt{a^3+1}}=\dfrac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\ge\dfrac{2}{a+1+a^2-a+1}=\dfrac{2}{a^2+2}\)

\(\Rightarrow VT\ge\dfrac{2}{a^2+2}+\dfrac{2}{b^2+2}+\dfrac{2}{c^2+2}\)

Do \(abc=8\Rightarrow a^2b^2c^2=64\) , tồn tại các số thực dương x;y;z sao cho:

\(\left(a^2;b^2;c^2\right)=\left(\dfrac{4x}{y};\dfrac{4y}{z};\dfrac{4z}{x}\right)\)

\(\Rightarrow VT\ge\dfrac{2}{\dfrac{4x}{y}+2}+\dfrac{2}{\dfrac{4y}{z}+2}+\dfrac{2}{\dfrac{4z}{x}+2}=\dfrac{y}{2x+y}+\dfrac{z}{2y+z}+\dfrac{x}{2z+x}\)

\(VT\ge\dfrac{x^2}{x^2+2xz}+\dfrac{y^2}{y^2+2xy}+\dfrac{z^2}{z^2+2yz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\) (đpcm)

18 tháng 9 2021

thầy ơi, sao chỗ Do abc = 8 ⇒ a2b2c= 64 lại suy ra các số thực dương x;y;z tồn tại được ạ? 

AH
Akai Haruma
Giáo viên
29 tháng 10 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(a^3+a\geq 2a^2; b^3+b\geq 2b^2; c^3+c\geq 2c^2\)

\(\Rightarrow A=\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\leq \frac{a}{2a^2+1}+\frac{b}{2b^2+1}+\frac{c}{2c^2+1}\)

\(\leq \frac{a}{a^2+2a}+\frac{b}{b^2+2b}+\frac{c}{c^2+2c}\)

hay \(A\leq \frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}(1)\)

Vì $abc=1$ nên đặt \((a,b,c)=(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})(x,y,z>0)\)

Khi đó:
\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x})\)

\(=\frac{3}{2}-\frac{1}{2}(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2zy}+\frac{z^2}{z^2+2xz})\)

\(\leq \frac{3}{2}-\frac{1}{2}.\frac{(x+y+z)^2}{x^2+2xy+y^2+2zy+z^2+2xz}=\frac{3}{2}-\frac{1}{2}.\frac{(x+y+z)^2}{(x+y+z)^2}=1(2)\) (theo BĐT Cauchy-Schwarz)

Từ \((1);(2)\Rightarrow A\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

1 tháng 11 2018

bai n ay la bai o dau ma dau cung thay nhi

\(\left(a^{\dfrac{1}{3}};b^{\dfrac{1}{3}};c^{\dfrac{1}{3}}\right)->\left(x;y;z>0\right)\left(xyz=1\right)\)\(\RightarrowΣ\dfrac{x^3}{x^9+x^3+1}\le1\)

\(\dfrac{x^3}{x^9+x^3+1}\le\dfrac{x^2+1}{2\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow-\dfrac{\left(x-1\right)^2\left(x^9+2x^8+4x^7+6x^6+6x^5+6x^4+5x^3+4x^2+2x+1\right)}{2\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^9+x^3+\right)}\le0\)

\(\Rightarrow VT\le\dfrac{1}{2}\cdot2=1=VP\)

a=b=c=x=y=z=1

NV
26 tháng 8 2021

Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)

BĐT trở thành:

\(\dfrac{y^2}{xz}+\dfrac{z^2}{xy}+\dfrac{x^2}{yz}\ge\dfrac{3}{2}\left(\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}-1\right)\)

\(\Leftrightarrow2\left(x^3+y^3+z^3\right)+3xyz\ge3x^2y+3y^2z+3z^2x\)

Áp dụng BĐT Schur ta có:

\(x^3+y^3+z^3+3xyz\ge x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\)

\(\Rightarrow VT\ge\left(x^3+xy^2\right)+\left(y^3+yz^2\right)+\left(z^3+zx^2\right)+x^2y+y^2z+z^2x\ge3\left(x^2y+y^2z+z^2x\right)\)

NV
10 tháng 6 2021

Bài này đã có ở đây:

Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24

5 tháng 7 2020

Cách khác:

Ta chứng minh: \(\frac{a}{a^3+a+1}\le\frac{1}{2}.\frac{a^{\frac{2}{3}}+1}{a^{\frac{4}{3}}+a^{\frac{2}{3}}+1}\) (1)

Đặt \(a=x^3\Leftrightarrow\frac{x^3}{x^9+x^3+1}\le\frac{1}{2}.\frac{x^2+1}{x^4+x^2+1}\)

Tương đương với $$\frac{(x - 1)^2 (x^9 + 2 x^8 + 4 x^7 + 6 x^6 + 6 x^5 + 6 x^4 + 5 x^3 + 4 x^2 + 2 x + 1)}{2 (x^2 - x + 1) (x^2 + x + 1) (x^9 + x^3 + 1)} \geq 0$$

Vậy (1) đúng. Thiết lập $3$ bất đẳng thức tương tự và cộng theo vế thu đượcVasc.

\(\Rightarrow\) $\text{đpcm}$

Đẳng thức xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
4 tháng 7 2020

Lời giải:
Xét hiệu: $a^3+1-a(a+1)=a^2(a-1)-(a-1)=(a+1)(a-1)^2\geq 0$ với mọi $a>0$

$\Rightarrow a^3+1\geq a(a+1)\Rightarrow a^3+a+1\geq a(a+2)$

$\Rightarrow \frac{a}{a^3+a+1}\leq \frac{1}{a+2}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

$\sum \frac{a}{a^3+a+1}\leq \sum \frac{1}{a+2}(*)$

Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho $(a,b,c)=(\frac{x^2}{yz}, \frac{y^2}{xz}, \frac{z^2}{xy})$

Khi đó, áp dụng BĐT Cauchy-Schwarz:

$\sum \frac{1}{a+2}=\sum \frac{yz}{x^2+2yz}=\frac{1}{2}\sum (1-\frac{x^2}{x^2+2yz})=\frac{3}{2}-\frac{1}{2}.\sum \frac{x^2}{x^2+2yz}\leq \frac{3}{2}-\frac{1}{2}.\frac{(x+y+z)^2}{x^2+2yz+y^2+2xz+z^2+2xy}$

$=\frac{3}{2}-\frac{1}{2}.\frac{(x+y+z)^2}{(x+y+z)^2}=1(**)$

Từ $(*); (**)$ ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$