K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

Em tự vẽ hình ra nháp để đối chiếu nhé!

a) Do đường tròn (O) đường kính AB nên \(\widehat{ADB} = 90^0\)\(\widehat{AHI} = 90^0\)

Suy ra tứ giác ADIE nội tiếp

b) Áp dụng góc nội tiếp nhìn cùng 1 cạnh bằng nhau cho 2 tứ giác nội tiếp ABCD và ADIE ta có:

\(\widehat{BDC} =\widehat{BAC}=\widehat{EDI} \)

Suy ra đpcm

c) Tam giác OAC cân tại O nên ta có:

\(\widehat{IOC}=2\widehat{OAC}=2\widehat{BDC}=\widehat{IDC}\) (theo câu b)

nên ta thu được tứ giác OECD nội tiếp!

cảm ơn nhìu ạ!! :)

18 tháng 5 2016

A B C D I E O

Cô hướng dẫn nhé. :)

Tứ giác AIDE nội tiếp đường tròn đường kính AI.

b. Do câu a ta có AIDE là tứ giác nội tiếp nên gó IDE = góc IAE. Lại có góc IAE = góc CDB. Từ đó suy ra DB là tia phân giac góc CDE.

c. Ta thấy góc CDE = 2 góc CAB (Chứng minh b). Lại có góc COB = 2 góc CAB. Từ đó suy ra góc CDE = góc COB. Hay OEDC là tứ giác nội tiếp ( Góc ngoài ở đỉnh bằng góc đối diện )

Chúc em học tốt ^^

a: góc IED+góc ICD=180 độ

=>IEDC nội tiếp

b: góc ECI=góc BDA=1/2*sđ cung BA

=>góc ECI=góc BCI

=>CI là phân giác của góc BCE

a) Xét (O) có 

ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))

AD là đường kính(gt)

Do đó: ΔACD vuông tại C(Định lí)

Suy ra: AC\(\perp\)CD tại C

hay \(EC\perp CD\) tại C

Xét tứ giác ECDF có 

\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối

\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

28 tháng 11 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

24 tháng 3 2018

cậu ơi cho tớ hỏi tý

14 tháng 3 2020

 Ta có:  ˆACD=900ACD^=900 (góc nội tiếp chắn nửa đường tròn đường kính AD) 

Xét tứ giác DCEF có:

        ˆACD=900ACD^=900 (cm trên)

        ˆEFD=900EFD^=900 (vì EF⊥ADEF⊥AD (gt))

⇒ˆACD+ˆEFD=1800⇒ACD^+EFD^=1800

=> Tứ giác DCEF là tứ giác nội tiếp đường tròn (đpcm).

b) Vì tứ giác DCEF là tứ giác nội tiếp (chứng minh câu a) 

⇒ˆC1=ˆD1⇒C1^=D1^ (góc nội tiếp cùng chắn cung EF) (1)

Mà ⇒ˆC2=ˆD1⇒C2^=D1^ (góc nội tiếp cùng chắn cung AB) (2)

Từ (1) và (2) ⇒ˆC1=ˆC2⇒C1^=C2^

⇒⇒ CA là tia phân giác của ˆBCFBCF^ (đpcm)

k đúng hộ

28 tháng 4 2021

A B C D E F O 1 2 1

a) Xét đường tròn tâm O đường kính AD có \(\widehat{ACD}=90^o\) (góc nội tiếp chắn nửa đường tròn) hay \(\widehat{ECD}=90^o\)

Xét tứ giác DCEF có: \(\widehat{ECD}+\widehat{EFD}=90^o+90^o=180^o\)

=> DCEF là tứ giác nội tiếp

b) Do DCEF là tứ gíc nội tiếp (cmt) => \(\widehat{C_2}=\widehat{D_1}\) (cùng nhìn cạnh EF)

ABCD là tứ giác nội tiếp => \(\widehat{C_1}=\widehat{D_1}\) (cùng nhìn cạnh AB)

=> \(\widehat{C_1}=\widehat{C_2}\left(=\widehat{D_1}\right)\) => CA là tia phân giác góc BCF

22 tháng 5 2018

A B C D E F

b) \(\widehat{BCE}=\widehat{ACF}\leftarrow\orbr{\begin{cases}\widehat{BCE}=\widehat{BDA}\left(ABCDnt\right)\\\widehat{ACF}=\widehat{BDA}\left(ECDFnt\right)\end{cases}}\)

19 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tam giác vuông EFD có:

FM là đường trung tuyến ứng với cạnh huyền CD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 là góc ngoài tại đỉnh M của tam giác FMD nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tứ giác BCMF có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 và Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 và cùng nhìn cạnh BF dưới một góc bằng nhau

Suy ra, tứ giác BCMF nội tiếp được.