so sánh 2^30 + 3^30 + 4^30 và 3.24^10 bạn nào giải thì cho mình cách làm nhé mình sẽ nhấn đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2^30 x 9^15 = 2^30 x (3^2)^15
= 2^30 x 3^ 30
= (2x3)^ 30
= 6^30
Vậy 6^30 = 2^30 x 9^15
\(4^{30}=2^{30}.2^{30}=\left(2^3\right)^{10}.\left(2^2\right)^{15}=8^{10}.4^{15}>8^{10}.3^{15}>8^{10}.3^{11}\)
\(=8^{10}.3^{10}.3=\left(8.3\right)^{10}.3=3.24^{10}\)
=>2^30+... >3.24^10
tick nhé(bn nói rồi mà)
\(VT=2^{30}+3^{30}+4^{30}\)
\(\Rightarrow VT\ge3\sqrt[3]{\left(2.3.4\right)^{3.10}=3.24^{10}=VP}\)
\(\Rightarrow VT\ge VP\)
\(\Rightarrow2^{30}+3^{30}+4^{30}\ge3.24^{10}\)
Cách làm cũng gần giống bạn Nhi:
Xét \(A=x^{30}+y^{30}+z^{30}\) với x ,y,z>0
Áp dụng BĐT cô si ta có:
\(A=x^{30}+y^{30}+z^{30}\ge3.\sqrt[3]{\left(xyz\right)^{30}}=3.\left(xyz\right)^{10}\)
Dấu bằng xảy ra khi x=y=z
Khi \(x\ne y\ne z\)sẽ không tồn tại dấu bằng
\(\Rightarrow x^{30}+y^{30}+z^{30}>3\left(xyz\right)^{10}\)
Thay x=2,y=3,z=4 \(\Rightarrow2^{30}+3^{30}+4^{30}>3.24^{10}\)
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
Ta có: 4^30=2^30.2^30=2^30.4^15
3.24^10=3.(3.2^3)^10=2^30.3^11
Ta thấy: 3^11<3^15<4^15 => 4^15>3^11
Vì 4^15>3^11 nên 2^30.4^15>2^30.3^11
=>2^30+3^30+4^30>3.24^10
qwertyuiopasdfghjklzxcvbnm
zehahahahahahahahhahahahahahahahahahahahahaha cái dcm
\(3\times24^{10}\)
\(=3\times\left(2^3\times3\right)^{10}\)
\(=3\times3^{10}\times\left(2^3\right)^{10}\)
\(=3^{11}\times2^{30}\)
\(=3^{11}\times\left(2^2\right)^{15}\)
\(=3^{11}\times4^{15}\)
Vì \(3^{11}\)<\(4^{15}\left(3;4;11;15\inℕ\right)\)
Nên \(3^{11}\times4^{15}\)< \(4^{15}\times4^{15}=4^{30}\)
Do đó : \(3\times24^{10}\)< \(4^{30}\)
Vậy \(2^{30}+3^{30}+4^{30}\)> \(3\times24^{10}\)