K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2015

1 + 7 + 72 + ... + 7101

= (1 + 7) + 72.(1 + 7) + ... + 7100.(1 + 7)

= 8 + 72.8 + ... + 7100.8

= 8.(1 + 72 + ... + 7100) chia hết cho 8

21 tháng 10 2021

giúp tớ với

17 tháng 12 2021

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

\(M=1+7+7^1+7^2+...+7^{101}\)

\(=\left(1+7\right)+7\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8\cdot\left(1+7+...+7^{100}\right)⋮8\)

28 tháng 10 2016

a, Ta co : M= ( 1 +4 + 4) + ( 43 + 44 + 45 ) +.......................+ ( 42010 + 42011 +42012 )

              M = 1. (1+4+16 ) +43. (1+4+16 ) +.........................+ 42010. ( 1+4 +16 

              M = 1, 21 + 43. 21 +..............................................+ 42010 .21

              M= 21.(1+43+.................................... + 42010 ) CHIA HẾT 21

​TƯƠNG TƯ

5 tháng 8 2019

\(B=1+7+7^2+7^3+7^4+...+7^{101}\)

\(B=\left(1+7\right)+\left(7^2+7^3\right)+\left(7^4+7^5\right)+...+\left(7^{100}+7^{101}\right)\)

\(B=8+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(B=8+7^2\cdot8+7^4\cdot8+...+7^{100}\cdot8\)

\(B=8\left(1+7^2+7^4+...+7^{100}\right)\)

\(\text{Vì 8⋮8}\Rightarrow8\left(1+7^2+7^4+...+7^{100}\right)⋮8\)

\(\text{Hay B⋮8}\)

\(\text{Vậy B⋮8}\)

5 tháng 8 2019

\(B=1+7+7^2+7^3+7^4+...+7^{101}\)

\(B=\left(1+7\right)+\left(7^2+7^3\right)+\left(7^4+7^5\right)+...+\left(7^{100}+7^{101}\right)\)

\(B=8+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(B=8+7^2\cdot8+7^4\cdot8+...+7^{100}\cdot8\)

13 tháng 8 2015

TA CÓ : (1+7)+(7^2+7^3)+......+(7^100+7^101)

     =>    8+(7(1+7))+.....+(7^100(1+7)

    =>     8+7.8 +7^2.8+....+7^100.8

    =>     8(1+7+7^2+.....+7^100)

    MÀ 8 CHIA HẾT CHO 8  VẬY  1+7+7^2+...+7^101 CHIA HẾT CHO 8

6 tháng 10 2017

Bạn Nguyễn Văn Vinh làm đúng wa ^_^

16 tháng 11 2015

hơi qá r` đấy !

1 + 7 + 72 + ........... + 7101 

= ( 1 + 7 ) + ( 72 + 73 ) + ............. + ( 7100 + 7101 )

= 8 + 72( 1 + 7 ) + ............. + 7100( 1 + 7 )

= 8 + 72 . 8 + ........... + 7100 . 8 

= 8( 1 + 72 + ............. + 7100 ) chia hết cho 8 

25 tháng 10 2020

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

19 tháng 11 2023

Rrffhvyccbvfccvbbbhhgg

28 tháng 10 2019

Đặt A=1+7+72+...+7101

         =(1+7)+(72+73)+...+(7100+7101)

         =8+72(1+7)+...+7100(1+7)

         =8+72.8+...+7100.8

         =8(1+72+...+7100)

\(\Rightarrow A⋮8\)

Vậy A\(⋮\)8

28 tháng 10 2019

 Ta có : A = ( 1 + 7 ) + ( 7^2 +7^3 ) + .... + ( 7^100 + 7^101 )

                 = 1( 1 + 7 ) + 7^2( 1+7 ) +.....+ 7^100( 1 + 7 )

                 = 1. 8 + 7^2 . 8 +....+ 7^100 . 8

                 = 8( 1+7^2+....+7^100 )

=> A chia hết cho 8