CMR: A=1-1/2+1/3-1/4+...+1/99-1/100=1/101+1/102+...+1/200
Mik viết thế kia mong các bạn thông cảm ( Vì đề bài dài quá mà)
THANK YOU NHÌU NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải tại đây:
Câu hỏi của Nguyễn Kim Chi - Toán lớp 7 | Học trực tuyến
Và lưu ý lần sau gõ đề bằng công thức toán nhé.
P/s : Đề sai mik sửa lại rồi : Tham khảo nhé :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{200}-2.\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{200}-1+\frac{1}{2}+....+\frac{1}{100}\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Ta có :
1002 > 99 . 100
1012 > 100 . 101
..............
2002 > 199. 200
=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)
=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\) \(\left(1\right)\)
Tương tự ta có :
A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)
=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)
=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)
=> A > \(\frac{1}{200}\) \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)Ta có :
\(\frac{1}{200}< A< \frac{1}{99}\)
=> ĐPCM
so cac so mu la (99 -1) : 1+1= 99 so
tong cac so mu la (99+1) x 99 : 2 =4950
=> =34950 =..............................
ban tu tinh lam bieng rut gon qua ban thich rut thi rut tuy co ban
Cho G =1/100^2+1/101^2+1/102^2+....+1/198^2+1/199^2 . CMR 1/200 bé hơn G bé hơn 1/99
Giúp mk với nha.
Ta có : \(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\frac{1}{101^2}< \frac{1}{100.101}\)
\(\frac{1}{102^2}< \frac{1}{101.102}\)
...
\(\frac{1}{198^2}< \frac{1}{197.198}\)
\(\frac{1}{199^2}< \frac{1}{198.199}\)
\(\Rightarrow G< \frac{1}{99.100}+\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{197.198}+\frac{1}{198.199}\)
\(\Rightarrow G< \frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{198}-\frac{1}{199}\)
\(\Rightarrow G< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)(1)
Ta có : \(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\frac{1}{101^2}>\frac{1}{101.102}\)
\(\frac{1}{102^2}>\frac{1}{102.103}\)
...
\(\frac{1}{199^2}>\frac{1}{199.200}\)
\(\Rightarrow G>\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+...+\frac{1}{199.200}\)
\(\Rightarrow G>\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+...+\frac{1}{199}-\frac{1}{200}\)
\(\Rightarrow G>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{1}{200}< G< \frac{1}{99}\)
Vậy \(\frac{1}{200}< G< \frac{1}{99}\).