Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s : Đề sai mik sửa lại rồi : Tham khảo nhé :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{200}-2.\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{200}-1+\frac{1}{2}+....+\frac{1}{100}\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
so cac so mu la (99 -1) : 1+1= 99 so
tong cac so mu la (99+1) x 99 : 2 =4950
=> =34950 =..............................
ban tu tinh lam bieng rut gon qua ban thich rut thi rut tuy co ban
Cho G =1/100^2+1/101^2+1/102^2+....+1/198^2+1/199^2 . CMR 1/200 bé hơn G bé hơn 1/99
Giúp mk với nha.
Ta có : \(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\frac{1}{101^2}< \frac{1}{100.101}\)
\(\frac{1}{102^2}< \frac{1}{101.102}\)
...
\(\frac{1}{198^2}< \frac{1}{197.198}\)
\(\frac{1}{199^2}< \frac{1}{198.199}\)
\(\Rightarrow G< \frac{1}{99.100}+\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{197.198}+\frac{1}{198.199}\)
\(\Rightarrow G< \frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{198}-\frac{1}{199}\)
\(\Rightarrow G< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)(1)
Ta có : \(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\frac{1}{101^2}>\frac{1}{101.102}\)
\(\frac{1}{102^2}>\frac{1}{102.103}\)
...
\(\frac{1}{199^2}>\frac{1}{199.200}\)
\(\Rightarrow G>\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+...+\frac{1}{199.200}\)
\(\Rightarrow G>\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+...+\frac{1}{199}-\frac{1}{200}\)
\(\Rightarrow G>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{1}{200}< G< \frac{1}{99}\)
Vậy \(\frac{1}{200}< G< \frac{1}{99}\).
cho mi sửa lại:
\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)
a) \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
= \(\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)\) - \(\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\) - \(\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)\) - 2.\(\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)\) - \(\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
= \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\) - \(1-\frac{1}{2}-...-\frac{1}{100}\)
= \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Vậy \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\) = \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Mình chỉ làm được phần a) thôi, nhưng k cho mình nhé
a, Ta có: \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+....+\left(1-\frac{99}{100}\right)\right]\)
\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-100+\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)(đpcm)
b, Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)(đpcm)
a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...\)\(+\frac{99}{100}\)
Xét: \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
= \(\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
= \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)
= \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)( có 99 số hạng là 1 )
= \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(\left(99+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)( đpcm )
Vậy: ...
(100 - 99 + 98 - 87 + ... + 2 - 1) : 50 + 2010 - 12x = 21
=> (1 + 1 + ... + 1) : 50 + 2010 - 12x = 21
=> 50 : 50 + 2010 - 12x = 21
=> 1 + 2010 - 12x = 21
=> 2011 - 12x = 21
=> 12x = 2011 - 21
=> 12x = 1990
=> x = 995/6