K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 8 2021

Lời giải:

Để $\sqrt{x^2+3}$ có nghĩa thì $x^2+3\geq 0$

Điều này luôn đúng với mọi $x\in\mathbb{R}$ do $x^2\geq 0, \forall x\in\mathbb{R}\Rightarrow x^2+3>0, \forall x\in\mathbb{R}$

Vậy đkxđ là $x\in\mathbb{R}$

ĐKXĐ: \(x\in R\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2021

** Lần sau bạn chú ý viết đề bằng công thức toán

Để \(\sqrt{\frac{1}{x-1}}\) xác định thì \(\left\{\begin{matrix} x-1\neq 0\\ \frac{1}{x-1}\geq 0\end{matrix}\right.\Leftrightarrow x-1>0\Leftrightarrow x>1\)

14 tháng 8 2021

\(\sqrt{\dfrac{1}{x-1}}\)

\(ĐKXĐ:\dfrac{1}{x-1}>0\Leftrightarrow x-1>0\left(1>0\right)\Leftrightarrow x>1\)

17 tháng 7 2023

\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)

\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :

\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)

\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)

\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)

\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)

17 tháng 7 2023

sorry mn cho e sửa lại đề ạ

tìm gtln của p ạ

 

28 tháng 2 2022

bon gà

 

16 tháng 7 2023

ĐKXĐ : \(x>0\)

Áp dụng bất đẳng thức Cauchy cho 2 số dương \(\sqrt{x};\dfrac{4}{\sqrt{x}}\) ta có 

\(P=\sqrt{x}+\dfrac{4}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{4}{\sqrt{x}}}=4\)

Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{4}{\sqrt{x}}\Leftrightarrow x=4\)

16 tháng 7 2023

\(P=\sqrt[]{x}+\dfrac{4}{\sqrt[]{x}}\left(x>0\right)\)

\(P=\dfrac{x+4}{\sqrt[]{x}}=\dfrac{x+4}{\sqrt[]{x}}\)

Vì \(x>0;x+4>4\)

\(\Rightarrow P=\dfrac{x+4}{\sqrt[]{x}}>4\)

⇒ Không có giá trị nhỏ nhất

biểu thức B đâu rồi bạn

13 tháng 12 2023

\(A=\dfrac{3}{\sqrt{x+1}}\) (đk: x>-1)

Để A nguyên \(\Rightarrow\sqrt{x+1}\) phải là ước của 3

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)

17 tháng 7 2023

\(P=\dfrac{x+5}{\sqrt[]{x}+2}=\dfrac{x-4+9}{\sqrt[]{x}+2}=\dfrac{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)+9}{\sqrt[]{x}+2}\)

\(=\left(\sqrt[]{x}-2\right)+\dfrac{9}{\sqrt[]{x}+2}=\left(\sqrt[]{x}+2\right)+\dfrac{9}{\sqrt[]{x}+2}-4\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\left(\sqrt[]{x}+2\right);\dfrac{9}{\sqrt[]{x}+2}\left(x\ge0\right)\)

\(\left(\sqrt[]{x}+2\right)+\dfrac{9}{\sqrt[]{x}+2}\ge2\sqrt[]{\left(\sqrt[]{x}+2\right).\dfrac{9}{\sqrt[]{x}+2}}=2.3=6\)

\(\Rightarrow P=\left(\sqrt[]{x}+2\right)+\dfrac{9}{\sqrt[]{x}+2}-4\ge6-4=2\)

\(\Rightarrow P\ge2\Rightarrow Min\left(P\right)=2\)

 

17 tháng 7 2023

Bạn xem lại đề có phải \(P=x+\dfrac{5}{\sqrt[]{x}+2}\) không?

22 tháng 8 2021

Vì `2>0` và `x^{2}>0` ( Với `x\ne0` )

`->(2)/(x^{2})>0`

Vậy với mọi giá trị của `x` thì căn thức đều có nghĩa ( `x\ne0` )

ĐKXĐ: \(x\ne0\)