Tìm các giá trị của x để căn bậc 2 có nghĩa:
căn của x^2+3
thông cảm cho e nha e ko bt vt dấu căn vì e ms sd ạ =(((
mn giúp mik nha 5phút nx là nộp rùi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
** Lần sau bạn chú ý viết đề bằng công thức toán
Để \(\sqrt{\frac{1}{x-1}}\) xác định thì \(\left\{\begin{matrix} x-1\neq 0\\ \frac{1}{x-1}\geq 0\end{matrix}\right.\Leftrightarrow x-1>0\Leftrightarrow x>1\)
\(\sqrt{\dfrac{1}{x-1}}\)
\(ĐKXĐ:\dfrac{1}{x-1}>0\Leftrightarrow x-1>0\left(1>0\right)\Leftrightarrow x>1\)
\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)
\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)
Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :
\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)
\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)
\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)
\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)
ĐKXĐ : \(x>0\)
Áp dụng bất đẳng thức Cauchy cho 2 số dương \(\sqrt{x};\dfrac{4}{\sqrt{x}}\) ta có
\(P=\sqrt{x}+\dfrac{4}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{4}{\sqrt{x}}}=4\)
Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{4}{\sqrt{x}}\Leftrightarrow x=4\)
\(P=\sqrt[]{x}+\dfrac{4}{\sqrt[]{x}}\left(x>0\right)\)
\(P=\dfrac{x+4}{\sqrt[]{x}}=\dfrac{x+4}{\sqrt[]{x}}\)
Vì \(x>0;x+4>4\)
\(\Rightarrow P=\dfrac{x+4}{\sqrt[]{x}}>4\)
⇒ Không có giá trị nhỏ nhất
\(A=\dfrac{3}{\sqrt{x+1}}\) (đk: x>-1)
Để A nguyên \(\Rightarrow\sqrt{x+1}\) phải là ước của 3
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
\(P=\dfrac{x+5}{\sqrt[]{x}+2}=\dfrac{x-4+9}{\sqrt[]{x}+2}=\dfrac{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)+9}{\sqrt[]{x}+2}\)
\(=\left(\sqrt[]{x}-2\right)+\dfrac{9}{\sqrt[]{x}+2}=\left(\sqrt[]{x}+2\right)+\dfrac{9}{\sqrt[]{x}+2}-4\)
Áp dụng bất đẳng thức Cauchy cho 2 số \(\left(\sqrt[]{x}+2\right);\dfrac{9}{\sqrt[]{x}+2}\left(x\ge0\right)\)
\(\left(\sqrt[]{x}+2\right)+\dfrac{9}{\sqrt[]{x}+2}\ge2\sqrt[]{\left(\sqrt[]{x}+2\right).\dfrac{9}{\sqrt[]{x}+2}}=2.3=6\)
\(\Rightarrow P=\left(\sqrt[]{x}+2\right)+\dfrac{9}{\sqrt[]{x}+2}-4\ge6-4=2\)
\(\Rightarrow P\ge2\Rightarrow Min\left(P\right)=2\)
Bạn xem lại đề có phải \(P=x+\dfrac{5}{\sqrt[]{x}+2}\) không?
Vì `2>0` và `x^{2}>0` ( Với `x\ne0` )
`->(2)/(x^{2})>0`
Vậy với mọi giá trị của `x` thì căn thức đều có nghĩa ( `x\ne0` )
Lời giải:
Để $\sqrt{x^2+3}$ có nghĩa thì $x^2+3\geq 0$
Điều này luôn đúng với mọi $x\in\mathbb{R}$ do $x^2\geq 0, \forall x\in\mathbb{R}\Rightarrow x^2+3>0, \forall x\in\mathbb{R}$
Vậy đkxđ là $x\in\mathbb{R}$
ĐKXĐ: \(x\in R\)