Tính tổng A=a+b+c, biết rằng \((-5a^2b^4c^6)^7-(9a^3bc^5)^8=0\)
Trả lời: A=... ?
Nhanh nhé các bn, mik đang cần gấp!!!
Ai đúng thì mik tick hết!!!
P/s: Nhớ ghi lời giải chi tiết nhé!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3=2\left(c^3-8d^3\right)\)
\(\Leftrightarrow a^3+b^3=2c^3-16d^3\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3c^3-15d^3\)
Ta có: \(3c^3-15d^3=3\left(c^3-5d^3\right)⋮3\)
\(\Rightarrow a^3+b^3+c^3+d^3⋮3\)(1)
Ta có: \(a^3-a=\left(a-1\right)a\left(a+1\right)⋮3\)
\(b^3-b=\left(b-1\right)b\left(b+1\right)⋮3\)
\(c^3-c=\left(c-1\right)c\left(c+1\right)⋮3\)
\(d^3-d=\left(d-1\right)d\left(d+1\right)⋮3\)
\(\Rightarrow a^3+b^3+c^3+d^3-a-b-c-d⋮3\)(2)
Từ (1) và (2) suy ra \(a+b+c+d⋮3\)
\(10^3.100^2.1000^5\)
=\(10^3.10^5.10^{15}\)
=\(10^{23}\)
b) \(16.64.8^2:\left(4^3.2^5.16\right)\)
=\(2^4.2^6.2^6:\left(2^6.2^5.2^4\right)\)
=\(2^{10}.2^6:\left(2^{11}.2^4\right)\)
=\(2^{16}:2^{15}\)
=2
c) \(\left(20.2^4+12.2^4-48.2^2\right):8^2\)
= \(\left[2^4.\left(20+12\right)-48.2^2\right]:8^2\)
= \(\left[16.32-48.4\right]:64\)
= \(\left[512-192\right]:64\)
= \(320:64\)
= \(5\)
Câu d thì mình chưa hiểu đề bài thì bạn viết lại hộ mình để mình giải cho
A=a=b=c=0 đó bạn ( mình ko bt cách giải)
Ta có:\(\left(-5a^2b^4c^6\right)^7-\left(9a^3bc^5\right)^8=0\)
\(\left(-5\right)^7a^{14}b^{28}c^{42}-9^8a^{24}b^8c^{40}=0\)
Vì \(a^{14}b^{28}c^{42}\ge0\Rightarrow\left(-5\right)^7a^{14}b^{28}c^{42}\le0\)
\(a^{24}b^8c^{40}\ge0\Rightarrow9^8a^{24}b^8c^{40}\ge0\)
\(\Rightarrow\left(-5\right)^7a^{14}b^{28}c^{42}-9^8a^{24}b^8c^{40}\le0\)
Mà VP=0
Dấu "=" xảy ra khi
\(\left(-5\right)^7a^{14}b^{28}c^{42}=0\) và \(9^8a^{24}b^8c^{40}=0\)
\(\Rightarrow a=b=c=0\)
\(\Rightarrow A=a+b+c=0+0+0=0\)