K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

hình chiếu AB<AC (theo hình vẽ) => EB<EC

hình chiếu AE<AC=>CE<CB

từ đó =>EB<EC<CB

=>EB<CB

12 tháng 3 2017

hình bn vẽ đẹp thiệt đó hiha

1 tháng 1 2021

a)   ta có :∠EAC=90(gt)

                ∠BAD=90o(gt)

=>∠EAC+∠BAC=∠BAD+∠BAC

=>∠EAB=∠DAC

Xét △ADC và △ABC,có:

AD=AB(gt)

∠CAB=∠EAB(cmt)

AE=AC(gt)

=>△ADC=△ABE(c.g.c)

=>BE=DC(t/ư)

Hình 31 đâu rồi bạn?

a: Ta có: \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=\widehat{BAC}+90^0\)

\(\widehat{CAD}=\widehat{CAB}+\widehat{DAB}=\widehat{BAC}+90^0\)

Do đó: \(\widehat{BAE}=\widehat{CAD}\)

Xét ΔBAE và ΔDAC có

AB=AD

\(\widehat{BAE}=\widehat{DAC}\)

AE=AC

DO đó: ΔBAE=ΔDAC

=>BE=DC

b: Gọi giao điểm của BE và CD là H

Ta có: ΔBAE=ΔDAC

=>\(\widehat{ABE}=\widehat{ADC};\widehat{AEB}=\widehat{ACD}\)

Xét tứ giác AHBD có \(\widehat{ADH}=\widehat{ABH}\)

nên AHBD là tứ giác nội tiếp

=>\(\widehat{DHA}=\widehat{DBA}=45^0\)

Xét tứ giác AHCE có \(\widehat{AEH}=\widehat{ACH}\)

nên AHCE là tứ giác nội tiếp

=>\(\widehat{AHE}=\widehat{ACE}=45^0\)

\(\widehat{DHE}=\widehat{DHA}+\widehat{EHA}=45^0+45^0=90^0\)

=>EB\(\perp\)CD tại H

7 tháng 1 2016

sgk lớp 6 nâng cao có đó

a) Ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACD}=\widehat{BCD}=\dfrac{\widehat{ACB}}{2}\)(CD là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔBAC cân tại A)

nên \(\widehat{ABE}=\widehat{CBE}=\widehat{ACD}=\widehat{BCD}\)

Xét ΔADC vuông tại A và ΔAEB vuông tại A có 

AC=AB(ΔABC vuông cân tại A)

\(\widehat{ACD}=\widehat{ABE}\)(cmt)

Do đó: ΔADC=ΔAEB(Cạnh góc vuông-góc nhọn kề)

Suy ra: AD=AE(Hai cạnh tương ứng) và CD=BE(Hai cạnh tương ứng)

a) Ta có: \(\widehat{ABE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACD}=\dfrac{\widehat{ACB}}{2}\)(CD là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC vuông cân tại A)

nên \(\widehat{ABE}=\widehat{ACD}\)

Xét ΔABE vuông tại A và ΔACD vuông tại A có 

AB=AC(ΔABC vuông cân tại A)

\(\widehat{ABE}=\widehat{ACD}\)(cmt)

Do đó: ΔABE=ΔACD(cạnh góc vuông-góc nhọn kề)

Suy ra: BE=CD(Hai cạnh tương ứng) và AE=AD(Hai cạnh tương ứng)

Bài 1: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 2: 

a: Xét ΔABE và ΔACD có

AB=AC
\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔBDC và ΔCEB có

BD=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

DO đó: ΔBDC=ΔCEB

Suy ra: \(\widehat{ODB}=\widehat{OEC}\)

Xét ΔODB và ΔOEC có 

\(\widehat{ODB}=\widehat{OEC}\)

BD=CE

\(\widehat{DBO}=\widehat{ECO}\)

Do đó: ΔODB=ΔOEC

Bài 2: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 3: 

Xét ΔABE và ΔACD có 

AB=AC
\(\widehat{A}\) chung

AE=AD
Do đó: ΔABE=ΔACD

Suy ra: BE=CD