K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

các bạn cộng tác viên giúp mk vs

25 tháng 2 2017

\(S=1-4+4^2-4^3+...4^{100}\)

\(\Rightarrow4S=4-4^2+4^3-4^4+....+4^{101}\)

\(\Rightarrow4S-S=\left(4-4^2+4^3-4^4+...+4^{101}\right)-\left(1-4+4^2-4^3+...+4^{100}\right)\)\(\Rightarrow3S=4^{101}-1\)

\(\Rightarrow S=\frac{4^{101}-1}{3}\)

20 tháng 10 2021

\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\\ \Rightarrow3A=4^{100}-1< 4^{100}=B\\ \Rightarrow A< \dfrac{B}{3}\)

22 tháng 5 2023

        A =          \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\) + ...........+ \(\dfrac{1}{4^{100}}\)

       A =          \(\dfrac{1}{4^2}\) +  \(\dfrac{1}{4^3}\)+...+ \(\dfrac{1}{4^{99}}\)+  \(\dfrac{1}{4^{100}}\)

4 \(\times\) A =   \(\dfrac{1}{4}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\) +...+ \(\dfrac{1}{4^{99}}\)

4A - A =   \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)

      3A =  \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)

        A = ( \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)): 3

        A =   \(\dfrac{1}{12}\) - \(\dfrac{1}{3\times4^{100}}\)

 

22 tháng 5 2023

Đặt A=1/4^2 +...+1/4^100

       4A=1/4+...+1/4^99

      4A-A=(1/4+...+1/4^99)-(1/4^2+...+1/4^100)

     3A=1/4-1/4^100

      A=(1/4-1/4^100)/3

Vậy...

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)

Bài 2: 

a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ

mà số nguyên tố chẵn duy nhất là 2

nên số lẻ còn lại là 599(thỏa ĐK)

Vậy: Hai số nguyên tố cần tìm là 2 và 599

4 tháng 4 2021

b,Gọi ƯCLN(21n+4,14n+3)=d

21n+4⋮d ⇒42n+8⋮d

14n+3⋮d ⇒42n+9⋮d

(42n+9)-(42n+8)⋮d

1⋮d ⇒ƯCLN(21n+4,14n+3)=1

Vậy phân số 21n+4/14n+3 là phân số tối giản

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

$S=1+(-2)+3+(-4)+....+49+(-50)$

$=[1+(-2)]+[3+(-4)]+....+[49+(-50)]$

$=(-1)+(-1)+(-1)+....+(-1)$

Số lần xuất hiện của $-1$: $[(50-1):1+1]:2=25$ (lần)

$S=(-1).25=-25$

28 tháng 2 2016

A=\(\frac{\left(49+1\right).49}{2}=1225\)

B/3=4100/3=1336,6666666666666....

Từ trên ta suy ra A<B/3

7 tháng 1 2016

Bài 3 : a) 3784 + 23 - 3785 - 15

= (3784 - 3785) + (23 - 15)

= -1 + 8 

= 7

b) 21 + 22 + 23 + 24 - 11 - 12 - 13 - 14

= (21 - 11) + (22 - 12) + (23 - 13) + (24 - 14)

= 10 + 10 + 10 + 10 

= 40

Bài 4 : a) -2001 + (1999 + 2001)

= -2001 + 1999 + 2001

= ( - 2001 + 2001 ) + 1999

= 0 + 1999

= 1999

B) (43 - 863) - (137 - 57)

= 43 - 863 - 137 - 57 

= (43 - 57) + ( -863 - 137 )

= -14 + -1000

= -1014 

Nhớ tick !!!

7 tháng 1 2016

bài 3 

a.=22

b.=40

bài 4:

a.=1999

b.=-900