Tìm a,b thuoc n biet
a) 2a+124=5b
b) 10a+168=b2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Với \(a=0\Rightarrow1+124=5^b\Rightarrow b=3\)
Với \(a>0\Rightarrow2^a\) luôn chẵn \(\Rightarrow2^a+124\) luôn chẵn
Mà \(5^b\) luôn lẻ \(\Rightarrow\) không tồn tại \(a>0\) thỏa mãn
Vậy \(\left(a;b\right)=\left(0;3\right)\)
b.
\(3^a\) và \(9^b\) đều luôn lẻ \(\Rightarrow3^a+9^b\) luôn chẵn
Mà 183 lẻ \(\Rightarrow\) không tồn tại a; b thỏa mãn
c.
\(a=0\Rightarrow1+80=3^b\Rightarrow b=4\)
Với \(a>0\Rightarrow2^a\) chẵn \(\Rightarrow2^a+80\) chẵn
Mà \(3^b\) luôn lẻ \(\Rightarrow\) ko tồn tại \(a>0\) thỏa mãn
Vậy \(\left(a;b\right)=\left(0;4\right)\)
Bài 2 :
a) \(2^a+154=5^b\left(a;b\inℕ\right)\)
-Ta thấy,chữ số tận cùng của \(5^b\) luôn luôn là chữ số \(5\)
\(\Rightarrow2^a+154\) có chữ số tận cùng là \(5\)
\(\Rightarrow2^a\) có chữ số tận cùng là \(1\) (Vô lý, vì lũy thừa của 2 là số chẵn)
\(\Rightarrow\left(a;b\right)\in\varnothing\)
b) \(10^a+168=b^2\left(a;b\inℕ\right)\)
Ta thấy \(10^a\) có chữ số tận cùng là số \(0\)
\(\Rightarrow10^a+168\) có chữ số tận cùng là số \(8\)
mà \(b^2\) là số chính phương (không có chữ số tận cùng là \(8\))
\(\Rightarrow\left(a;b\right)\in\varnothing\)
Bài 3 :
a) \(M=19^k+5^k+1995^k+1996^k\left(với.k.chẵn\right)\)
Ta thấy :
\(5^k;1995^k\) có chữ số tận cùng là \(5\) (vì 2 số này có tận cùng là \(5\))
\(\Rightarrow5^k+1995^k\) có chữ số tận cùng là \(0\)
mà \(1996^k\) có chữ số tận cùng là \(6\) (ví số này có tận cùng là số \(6\))
\(\Rightarrow5^k+1995^k+1996^k\) có chữ số tận cùng là chữ số \(6\)
mà \(19^k\left(k.chẵn\right)\) có chữ số tận cùng là số \(1\)
\(\Rightarrow M=19^k+5^k+1995^k+1996^k\) có chữ số tận cùng là số \(7\)
\(\Rightarrow M\) không thể là số chính phương.
b) \(N=2004^{2004k}+2003\)
Ta thấy :
\(2004k=4.501k⋮4\)
mà \(2004\) có chữ số tận cùng là \(4\)
\(\Rightarrow2004^{2004k}\) có chữ số tận cùng là \(6\)
\(\Rightarrow N=2004^{2004k}+2003\) có chữ số tận cùng là \(9\)
\(\Rightarrow N\) có thể là số chính phương (nên câu này bạn xem lại đề bài)
Ta thấy 225 là số lẻ nên 100a + 3b + 1 và 2a + 10a + b cũng là các số lẻ.
Do 100a + 3b + 1 là số lẻ mà 100a là số chẵn nên 3b là số chẵn tức b là só chẵn.
Kết hợp với 2a + 10a + b là số lẻ ta có 2a là số lẻ
\(\Leftrightarrow2^a=1\Leftrightarrow a=0\).
Khi đó: \(\left(3b+1\right)\left(b+1\right)=225\)
\(\Leftrightarrow\left(b-8\right)\left(3b+28\right)=0\Leftrightarrow b=8\) (Do b là số tự nhiên).
Vậy a = 0; b = 8.
a) Vì 5b là số lẻ \(\forall b\in N\)
124 là số chẵn
=> 2a là số lẻ => a = 0
Thay a = 0 vào đề bài ta có: 20 + 124 = 5b
=> 1 + 124 = 5b
=> 5b = 125 = 53
=> b = 3
Vậy a = 0; b = 3
b) + Với a = 0, ta có: 100 + 168 = b2
=> 1 + 168 = b2
=> b2 = 169
Mà \(b\in N\) => b = 13
+ Với a khác 0 thì \(10^a⋮5\); 168 chia 5 dư 3
=> b2 chia 5 dư 3, vô lý vì số chính phương chia 5 chỉ có thể dư 0; 1; 4
Vậy a = 0; b = 13