Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét : \(\left(2x-1\right)^4=1\Leftrightarrow\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)
Xét : \(\left(81.2\right)\left(x-2\right)^2=1\Leftrightarrow162\left(x-2\right)^2=1\Leftrightarrow\left(x-2\right)^2=\frac{1}{162}\)
\(\orbr{\begin{cases}x-2=\sqrt{\frac{1}{162}}\\x-2=-\sqrt{\frac{1}{162}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{36+\sqrt{2}}{18}\\x=\frac{36-\sqrt{2}}{18}\end{cases}}\)
a) Nhận thấy
5^b tận cùng là 5
mà 2^a + 124 tận cùng cũng phải là 5
=> 2^a tận cùng là 1 mà 2^a tận cũng là số chẵn trừ số 0
=> a = 0
ta có
2^0 + 124 = 5^b
=> 125 -= 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b = 3
b) vế trái lẻ => b phải chẵn
=> vế phải không chia hết cho 9
=> cần 3^a không chia hết cho 9
=> a=0 hoặc 1
TH1 : a=0 => 3^a=1 => 9.b = 182 => b = 182/9 => vô nghiệm
TH2 : a=1 => 3^a=3 => 9.b = 180/9 = 20
Vậy a = 1 ; b = 20
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
a) Vì 5b là số lẻ \(\forall b\in N\)
124 là số chẵn
=> 2a là số lẻ => a = 0
Thay a = 0 vào đề bài ta có: 20 + 124 = 5b
=> 1 + 124 = 5b
=> 5b = 125 = 53
=> b = 3
Vậy a = 0; b = 3
b) + Với a = 0, ta có: 100 + 168 = b2
=> 1 + 168 = b2
=> b2 = 169
Mà \(b\in N\) => b = 13
+ Với a khác 0 thì \(10^a⋮5\); 168 chia 5 dư 3
=> b2 chia 5 dư 3, vô lý vì số chính phương chia 5 chỉ có thể dư 0; 1; 4
Vậy a = 0; b = 13