K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Hình vẽ:

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Lời giải:

Chuyển $S_{ABC}=x$. Tính $BD.CE$ theo $x$

Đặt $AB=c; BC=a; CA=b$.

Theo tính chất tia phân giác:

$\frac{AD}{DC}=\frac{c}{a}\Rightarrow \frac{AD}{b}=\frac{c}{c+a}$

$\Rightarrow AD=\frac{bc}{c+a}$
Tương tự:

$AE=\frac{bc}{a+b}$

Áp dụng định lý Pitago:

$BD^2=c^2+(\frac{bc}{a+c})^2=c^2[1+\frac{b^2}{(a+c)^2}]$

$=c^2.\frac{(a+c)^2+b^2}{(a+c)^2}=c^2.\frac{a^2+b^2+c^2+2ac}{(a+c)^2}$
$=c^2.\frac{2a^2+2ac}{(a+c)^2}=\frac{2ac^2}{a+c}$

Tương tự:

$CE^2=\frac{2ab^2}{a+b}$

Do đó:

$BD^2.CE^2=\frac{4a^2b^2c^2}{(a+c)(a+b)}$

$BD.CE=\frac{2abc}{\sqrt{(a+b)(a+c)}}=\frac{4xa}{\sqrt{(a+b)(a+c)}}$

Như bạn thấy thì $BD.CE$ không tính được riêng theo $S_{ABC}$ mà vẫn bị ảnh hưởng bởi $AB,AC$

9 tháng 4 2018

Em mới lớp 6....

13 tháng 11 2021

qwdddddddddddddddđqqqddddddddddddddddddddddddddddddddddddd09U*(9w bi  uehvuhytgvguvh eogeohseydđ qddddddasdewd 7fh 89

13 tháng 11 2021
Không làm mà đòi có ăn à
28 tháng 8 2021

Giúp mình với

 

13 tháng 12 2021

$\text{Ko bt làm}$

2 tháng 4 2018

CÓ tam giác abc vuông 

suy ra abc+acb=90

suy ra 2.obc+2.ocb=90

suy ra obc+ocb=45

tam giác obc có obc+ocb+boc=180

suy ra 45+boc=180

suy ra boc=135

2 tháng 4 2018

120 độ chắc chắn lun

24 tháng 6 2015

Bài 2: Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.] 
Áp dụng định lý pythagore vào tam giác vuông BGE ta có: 
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1) 
Áp dụng định lý pythagore vào tam giác vuông CGD ta có: 
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2) 

mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có: 

BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)  
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=> 
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=> 
BC = 2.(căn 5) cm

 

 

27 tháng 8 2015

Vì \(\Delta\)GDC vuông tại G nên theo định lý Py-ta-go ta có

\(DC^2=GD^2+GC^2\)(3)

Từ (1),(2) và (3) ta có 

\(BC^2=EB^2-EG^2+DC^2-GD^2=\left(\frac{AB}{2}\right)^2-EG^2+\left(\frac{AC}{2}\right)^2-GD^2\)

\(\Rightarrow BC^2=\left(\frac{6}{2}\right)^2-EG^2+\left(\frac{8}{2}\right)^2-GD^2=3^2+4^2-\left(EG^2+GD^2\right)=25-\left(EG^2+GD^2\right)\)(4)

Mà ta có ED là đường trung bình của \(\Delta ABC\) nên ta có \(ED=\frac{BC}{2}\)   (5)

Vì \(\Delta EDG\) vuông tại G nên áp dụng định lý Py-ta-go ta có 

\(ED^2=GD^2+EG^2\)  (6)

Từ (4),(5) và (6) ta có 

\(BC^2=25-ED^2=25-\left(\frac{BC}{2}\right)^2=25-\frac{BC^2}{4}=\frac{100-BC^2}{\text{4}}\)

\(\Rightarrow\text{4BC^2}=100-BC^2\)

\(\Leftrightarrow5BC^2=100\)

\(\Leftrightarrow BC^2=20\)

\(\Leftrightarrow BC=\sqrt{20}\)(cm)

Vậy \(BC=\sqrt{20}cm\)