Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a,b,c>0
CMR: a^3/b + b^3/c + c^3/a >= ab + bc + ca
\(\dfrac{a^3}{b}+ab+\dfrac{b^3}{c}+bc+\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{a^4b}{b}}+2\sqrt{\dfrac{b^4c}{c}}+2\sqrt{\dfrac{c^4a}{a}}=2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
áp dụng AM GM ta có a^3/b+ab>=2a^2
chứng minh tương tự => a^3/b+b^3/c+c^3/a>=2(a^2+b^2+c^2)-(ab+bc+ca)
mà ta có a^2+b^2+c^2>=(ab+bc+ca)
=>a^3/b+b^3/c+c^3/a>= ab+bc+ca
"=" xảy ra khi a=b=c
\(\dfrac{a^3}{b}+ab+\dfrac{b^3}{c}+bc+\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{a^4b}{b}}+2\sqrt{\dfrac{b^4c}{c}}+2\sqrt{\dfrac{c^4a}{a}}=2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
áp dụng AM GM ta có a^3/b+ab>=2a^2
chứng minh tương tự => a^3/b+b^3/c+c^3/a>=2(a^2+b^2+c^2)-(ab+bc+ca)
mà ta có a^2+b^2+c^2>=(ab+bc+ca)
=>a^3/b+b^3/c+c^3/a>= ab+bc+ca
"=" xảy ra khi a=b=c