K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

\(\frac{6\left(x+2\right)}{x\left(x+2\right)}=\frac{6}{x}\)

\(\frac{x^2-xy}{5y-5x}=\frac{-x\left(y-x\right)}{5\left(y-x\right)}=-\frac{x}{5}\)

a: Thay x=-3 vào B, ta được:

\(B=\dfrac{2\cdot\left(-3\right)^2}{3\cdot\left(-3\right)+6}=\dfrac{2\cdot9}{-9+6}=\dfrac{18}{-3}=-6\)

b: \(A=\dfrac{2x^2+20+3x-6-7x-14}{\left(x+2\right)\left(x-2\right)}=\dfrac{2x^2-4x}{\left(x+2\right)\left(x-2\right)}=\dfrac{2x}{x+2}\)

13 tháng 9 2016

a) \(\frac{x^2-xy-x+y}{x^2+xy-x-y}\)=\(\frac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}\)=\(\frac{\left(x-1\right)\left(x-y\right)}{\left(x-1\right)\left(x+y\right)}\)=\(\frac{x-y}{x+y}\)

b) \(\frac{x^2-xy}{5y^2-5xy}\)=\(\frac{x\left(x-y\right)}{-5y\left(x-y\right)}\)=\(\frac{-x}{5y}\)

c) \(\frac{3x^2-12x+12}{x^4-8x}\)=\(\frac{3\left(x^2-4x+4\right)}{x\left(x^3-2^3\right)}\)=\(\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}\)=\(\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)

5 tháng 7 2016

a) \(A=4x\left(x+y\right)-5y\left(x-y\right)-4x^2=4x^2+4xy-5xy+5y^2-4x^2=5y^2-xy\)

Với x = -5; y = 2 thì: \(A=5\cdot2^2-\left(-5\right)\cdot2=20+10=30\)

b) \(B=-3x\left(x^2+y^2\right)+2y\left(x^2-y\right)=-3x^3-3xy^2+2yx^2-2y^2=-3x^3+2x^2y-3xy^2-2y^2\)

Với x = 1; y = 2 thì: \(B=-3\cdot1^3+2\cdot1^2\cdot2-3\cdot1\cdot2^2-2\cdot2^2=-3+4-12-8=-19\)

6 tháng 5 2021

Viết các đơn thức sau dưới dạng thu gọn 

a)3x.5y2.x2

5 tháng 7 2016

\(A=4x\left(x+y\right)-5y\left(x-y\right)-4x^2\)

     \(=4x^2+4xy-5y^2-5xy-4x^2\)

      = \(\left(4x^2-4x^2\right)+\left(4xy-5xy\right)-5y^2\)

       \(=5y^2-xy\)

Thay x=-5 và y=2 vào đa thức \(5y^2-xy\) ta được:

\(5.2^2-\left(-5\right).2=20+10=30\)

Vậy 30 là giá trị của đa thức trên tại x=-5 và y=2

\(B=-3x\left(x^2+y^2\right)+2y\left(x^2-y\right)\)

    \(=-3x^3-3xy^2+2yx^2-2y^2\)

    \(=-3x^3-3xy^2+2yx^2-2y^2\)

Thay x=1 và y=2 vào đa thức \(=-3x^3-3xy^2+2yx^2-2y^2\)

\(\left(-3\right).1^3-2.1.2^2+2.2.1^2-2.2^2=-3-8+4-8=-15\)

Vậy -15 là giá trị của đa thức \(=-3x^3-3xy^2+2yx^2-2y^2\)  tại x=1 và y=2

^...^ ^_^ hihihivui

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17 tháng 10 2020

Bài 4.

a) 3xy2 - 45x2y = 3xy( y - 15x )

b) 25y2 - 4x2 + 4x - 1

= 25y2 - ( 4x2 - 4x + 1 )

= ( 5y )2 - ( 2x - 1 )2

= ( 5y - 2x + 1 )( 5y + 2x - 1 )

c) x2 - 5x + xy - 5y

= x( x - 5 ) + y( x - 5 )

= ( x - 5 )( x + y )

d) x2 - 8x - 33

= x2 + 3x - 11x - 33

= x( x + 3 ) - 11( x + 3 )

= ( x + 3 )( x - 11 )

Bài 5.

a) A = ( x - 2 )3 - x2( x - 4 ) + 8

= x3 - 6x2 + 12x - 8 - x3 + 4x2 + 8

= -2x2 + 12x

B = ( x2 - 6x + 9 ) : ( x - 3 ) - x( x + 7 ) - 9

= ( x - 3 )2 : ( x - 3 ) - x2 - 7x - 9

= x - 3 - x2 - 7x - 9

= -x2 - 6x - 12

b) Với x = -1 thì A = -2.(-1)2 + 12.(-1) = -2 - 12 = -14

8 tháng 12 2019

a, điều kiện xác định là \(x\ne1;x\ne-1\)

\(\frac{3x+3}{x^2-1}\)

\(=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{3}{x-1}\)

b, để \(\frac{3x+3}{x^2-1}=-2\Rightarrow\frac{3}{x-1}=-2\)

\(\Rightarrow-2x+2=3\)

\(\Rightarrow-2x=1\)

\(\Rightarrow x=-\frac{1}{2}\)

8 tháng 12 2019

a. ĐKXĐ: x2 - 1\(\ne\)0 (=) x \(\ne\)\(\pm\)1

b. \(\frac{3x+3}{x^2-1}\)

\(=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{3}{x+1}\)với x \(\pm\)1

c. \(\frac{3}{x+1}=-2\)

\(\Rightarrow\)\(\left(x+1\right).\left(-2\right)=3\)

\(-2x-2=3\)

\(-2x=5\)

\(x=-\frac{5}{2}\)(t/m đk)

16 tháng 12 2021

a: \(A=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)

3 tháng 5 2020

\(A=\left(x-y\right)^2-2\left(x^2-xy-y^2\right)=x^2-2xy+y^2-2x^2+2xy+2y^2\)

\(=-x^2+3y^2\)