Cho tam giác ABC(AB\(\ne\)AC), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax(E thuộc Ax, F thuộc Ax). So sánh độ dài BE và CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác vuông BEC có EM là đường trung tuyến ứng với cạnh huyền
suy ra EM = \(\frac{1}{2}\)BC (1)
xét tam giác vuông CFB có FM là đường trung tuyến ứng với cạnh huyền
suy ra FM = \(\frac{1}{2}\)BC (2)
từ (1) và (2) suy ra M là trung điểm EF
mà M là trung điểm của BC
từ 2 điều đó suy ra BECF là hình bình hành
suy ra BE = CF
Xét 2 TG vuông BME và CMF, ta có:
BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)
=>TG BME=TG CMF(cạnh huyền-góc nhọn)
=>BE=CF(2 cạnh tương ứng)
Xét 2 TG vuông BME và CMF, ta có:
BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)
=>TG BME=TG CMF(cạnh huyền-góc nhọn)
=>BE=CF(2 cạnh tương ứng)
Hai tam giác vuông BME và CMF có
⇒ ΔBME = ΔCMF (cạnh huyền – góc nhọn)
⇒ BE = CF (hai cạnh tương ứng).
* Chú ý: Các em có thể suy nghĩ tại sao cần điều kiện AB ≠ AC ???
Hai tam giác vuông BME, CMF có:
BM=MC(gt)
=(đối đỉnh)
Nên ∆BME=∆CMF(cạnh huyền- góc nhọn).
Suy ra BE=CF.
Vì tia Ax đi qua trung điểm M của BC => AM là đường trung tuyến của tam giác của tam giác ABC và BM = MC.
BE II CF vì 2 đường thẳng này cùng vuông góc với tia Ax(đl 1 bài từ vuông góc tới song song)
Xét tam giác BME và tam giác CMF có :
Góc EBM = Góc MCF(so le trong)
BM = MC.
BME = CMF(2 góc đối đỉnh)
=> 2 tam giác này bằng nhau( g.c.g)
=> BE = CF(2 cạnh tương ứng)
Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{BME}=\widehat{CMF}\)
Do đó: ΔBEM=ΔCFM
Ta có hình vẽ trên:
Xét 2 tam giác vuông MBE và tam giác MCF có:
BM = MC (gt)
góc M1 = góc M2 (đối đỉnh)
suy ra tam giác MBE = tam giác MCF (cạnh huyền - góc nhọn)
suy ra BE = CF (2 cạnh tương ứng)
Vậy BE = CF
Xét \(\Delta BEM\) và \(\Delta CFM\) có:
\(\widehat{E}=\widehat{F}=90^o\)
MB = MC (gt)
\(\widehat{BME}=\widehat{CMF}\) (đối đỉnh)
Do đó \(\Delta BEM=\Delta CFM\) (cạnh huyền - góc nhọn)
=> BE = CF (2 cạnh t/ứ)
Xét \(\Delta BEM\)và \(\Delta CFM\)
\(\widehat{E}=\widehat{F}=90^{ }\)độ
\(MB=MC\)( gt )
\(\widehat{BME}=CMF\)( đối đỉnh )
\(\Rightarrow\)\(\Delta BEM=\Delta CFM\)( g - c - g )
\(\Rightarrow\)\(BE=CF\)( 2 cạnh tương ứng bằng nhau )
Hai tam giác vuông BME, CMF có:
BM=MC(gt)
ˆBMEBME^=ˆCMFCMF^(đối đỉnh)
Nên ∆BME=∆CMF(cạnh huyền- góc nhọn).
Suy ra BE=CF.
Ta có hình vẽ:
Δ CFM có: CFM + FMC + MCF = 180o
Δ EMB có: EMB + MBE + BEM = 180o
Mà CFM = MEB = 90o
FMC = BME (đối đỉnh) nên MCF = MBE
Xét Δ MCF và Δ MBE có:
MCF = MBE (cmt)
CM = BM (gt)
FMC = EMB (đối đỉnh)
Do đó, Δ MCF = Δ MBE (c.g.c)
=> CF = BE (2 cạnh tương ứng)
g-c-g mà bạn