Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
Δ CFM có: CFM + FMC + MCF = 180o
Δ EMB có: EMB + MBE + BEM = 180o
Mà CFM = MEB = 90o
FMC = BME (đối đỉnh) nên MCF = MBE
Xét Δ MCF và Δ MBE có:
MCF = MBE (cmt)
CM = BM (gt)
FMC = EMB (đối đỉnh)
Do đó, Δ MCF = Δ MBE (c.g.c)
=> CF = BE (2 cạnh tương ứng)
xét tam giác vuông BEC có EM là đường trung tuyến ứng với cạnh huyền
suy ra EM = \(\frac{1}{2}\)BC (1)
xét tam giác vuông CFB có FM là đường trung tuyến ứng với cạnh huyền
suy ra FM = \(\frac{1}{2}\)BC (2)
từ (1) và (2) suy ra M là trung điểm EF
mà M là trung điểm của BC
từ 2 điều đó suy ra BECF là hình bình hành
suy ra BE = CF
Xét 2 TG vuông BME và CMF, ta có:
BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)
=>TG BME=TG CMF(cạnh huyền-góc nhọn)
=>BE=CF(2 cạnh tương ứng)
Xét 2 TG vuông BME và CMF, ta có:
BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)
=>TG BME=TG CMF(cạnh huyền-góc nhọn)
=>BE=CF(2 cạnh tương ứng)
Lời giải:
Hai tam giác vuông BME và CMF có
⇒ ΔBME = ΔCMF (cạnh huyền – góc nhọn)
⇒ BE = CF (hai cạnh tương ứng).
Kiến thức áp dụng
+ Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
ΔABC vuông tại A và ΔDEF vuông tại D có:
BC = EF
∠B = ∠E
⇒ΔABC = ΔDEF
Hai tam giác vuông BME và CMF có
⇒ ΔBME = ΔCMF (cạnh huyền – góc nhọn)
⇒ BE = CF (hai cạnh tương ứng).
* Chú ý: Các em có thể suy nghĩ tại sao cần điều kiện AB ≠ AC ???
Ta có hình vẽ trên:
Xét 2 tam giác vuông MBE và tam giác MCF có:
BM = MC (gt)
góc M1 = góc M2 (đối đỉnh)
suy ra tam giác MBE = tam giác MCF (cạnh huyền - góc nhọn)
suy ra BE = CF (2 cạnh tương ứng)
Vậy BE = CF
Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{BME}=\widehat{CMF}\)
Do đó: ΔBEM=ΔCFM
Kí hiệu tam giác là t/g nhé
a) Có: BE _|_ Ax (gt)
CF _|_ Ax (gt)
Suy ra BE // CF (1)
Xét t/g EMB vuông tại E và t/g FMC vuông tại F có:
BM = CM (gt)
EMB = FMC ( đối đỉnh)
Do đó, t/g EMB = t/g FMC ( cạnh huyền và góc nhọn kề)
=> BE = CF (2 cạnh tương ứng) (2)
ME = MF (2 cạnh tương ứng) (3)
(1); (2) và (3) là đpcm
b) Xét t/g EMC và t/g FMB có:
EM = MF (câu a)
EMC = FMB ( đối đỉnh)
CM = BM (gt)
Do đó, t/g EMC = t/g FMB (c.g.c)
=> CE = BF (2 cạnh tương ứng) (4)
ECM = FBM (2 góc tương ứng)
Mà ECM và FBM là 2 góc so le trong
Nên EC // BF (5)
(4) và (5) là đpcm
Hai tam giác vuông BME, CMF có:
BM=MC(gt)
ˆBMEBME^=ˆCMFCMF^(đối đỉnh)
Nên ∆BME=∆CMF(cạnh huyền- góc nhọn).
Suy ra BE=CF.
Em phải vẽ hình nhé !