Thể tích khối lăng trụ :cho hình lăng trụ tam giác đều abc.a'b'c' có đáy là tam giác vuông tại b cạnh a'b' hợp với đáy 1 góc 30độ cạnh a'b'=a , a'c'=a căn 2 tính Vabc.a'b'c'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Từ giả thiết suy ra tứ diện A'ABC đều có cạnh a nên có thể tích là
V A ' A B C = a 3 2 12
Khi đó
V A B C . A ' B ' C ' = d A ' , A B C . S A B C = 3 V A ' A B C = a 3 2 4
Vì hình chóp A’.ABC có A'A = A'B = A'C và đáy ABC là tam giác đều nên hình chóp A’.ABC đều.
Gọi F là hình chiếu của A’ trên (ABC) nên F là tâm của đáy ABC là tam giác đều do đó F cũng là trọng tâm của tam giác ABC.
Gọi AF cắt BC tại D
Tam giác ABC đều cạnh a nên \(AD = \frac{{a\sqrt 3 }}{2}\)
Mà F là trọng tâm nên \(AF = \frac{2}{3}AD = \frac{{a\sqrt 3 }}{3}\)
Xét tam giác A’AF vuông tại F có
\(A'F = \sqrt {A'{A^2} - A{F^2}} = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \sqrt {{b^2} - \frac{{{a^2}}}{3}} \)
Diện tích tam giác đều ABC là \(S = \frac{{{a^2}\sqrt 3 }}{4}\)
Thể tích khối lăng trụ là \(V = A'F.S = \sqrt {{b^2} - \frac{{{a^2}}}{3}} .\frac{{{a^2}\sqrt 3 }}{4}\)
Đáp án là D
Đáy là tam giác đều cạnh bằng 2a . Diện tích đáy là
Đường thẳng A'B tạo với đáy góc 60 0 => BA'B' = 60 0 .
Xét tam giác BA'B' vuông tại B ' có
Thể tích khối lăng trụ là
Chọn A.
Do tam giác ABC đều có cạnh bằng a 3 nên
S A B C = a 3 2 . 3 4 = 3 a 2 3 4
Tam giác A'BC vuông tại A nên:
A ' B 2 = A A ' 2 + A B 2 ⇒ A A ' = A ' B 2 - A B 2 = 3 a 2 - a 3 2 = a 6
Vậy
V A B C . A ' B ' C ' = A A ' . S A B C = a 6 . 3 a 2 3 4 = 9 2 a 3 4
Chọn D.
Do tam giác A'AB vuông tại A nên theo pytago ta có
Lại có tam giác ABC vuông cân tại B nên
Thể tích khối lăng trụ đã cho