Cho a,b thuộc Z ,b>0, so sánh hai số hữu tỉ a/b và a+2005/b+2005
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}\) và \(\frac{a+2005}{b+2005}\)
Ta so sánh:
a( b+2005 ) và b( a + 2005)
hay ab + a2005 và ba + b2005
nghĩa là cần so sánh:
a2005 và b2005
Nếu a > b
\(\Rightarrow\) a2005 > b2005
\(\Rightarrow\) a(b +2005) > b(a + 2005)
\(\Rightarrow\frac{a}{b}>\frac{a+2005}{b+2005}\)
Nếu a < b
\(\Rightarrow\) a2005 < b2005
\(\Rightarrow\) a(b +2005) < b(a +2005)
\(\Rightarrow\) \(\frac{a}{b}< \frac{a+2005}{b+2005}\)
Nếu a = b
\(\Rightarrow\frac{a}{b}=1=\frac{a+2005}{b+2005}\)
Ta có: \(\frac{a}{b}=\frac{a.\left(b+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001a}{b^2+2001b}\)
\(\frac{a+2001}{b+2001}=\frac{b.\left(a+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001b}{b^2+2001b}\)
*TH1: a=b
=>\(\frac{a}{b}=\frac{a+2001}{b+2001}=1\)
*TH2: a<b
=>ab+2001a<ab+2001b
=>\(\frac{ab+2001a}{b^2+2001b}< \frac{ab+2001b}{b^2+2001b}\)
=>\(\frac{a}{b}< \frac{a+2001}{b+2001}\)
TH3:a>b
=>ab+2001a>ab+2001b
=>\(\frac{ab+2001a}{b^2+2001b}>\frac{ab+2001b}{b^2+2001b}\)
=>\(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Qui đồng mẫu số:
\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=> \(\frac{a}{b}<\frac{a+2001}{b+2001}\)
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=>a/b < a+2001/b+2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
Xét 3 TH :
1) a < b
Khi đó ta có ab + 2001a < ab + 2001b hay a(b+2001) < b(a+2001)
Chia 2 vế cho b(b+2001) ta được a/b < (a+2001)/(b+2001)
2) a = b ---> a/b = (a+2001)/(b+2001) = 1
3) a > b
Khi đó ta có ab + 2001a > ab + 2001b hay a(b+2001) > b(a+2001)
Chia 2 vế cho b(b+2001) ta được a/b > (a+2001)/(b+2001)
Tóm lại
a/b < (a+2001)/(b+2001) nếu a < b
a/b = (a+2001)/(b+2001) nếu a = b
a/b > (a+2001)/(b+2001) nếu a > b
Ta có:\(\frac{a}{b}=\frac{a.\left(b+2012\right)}{b.\left(b+2012\right)}=\frac{ab+a.2012}{b.\left(b+2012\right)}\)
\(\frac{a+2012}{b+2012}=\frac{b.\left(a+2012\right)}{b.\left(b+2012\right)}=\frac{ab+b.2012}{b.\left(b+2012\right)}\)
Vì a<0<b=>a<b=>a.2012<b.2012
=>\(\frac{ab+a.2012}{b.\left(b+2012\right)}<\frac{ab+b.2012}{b.\left(b+2012\right)}\)
=>\(\frac{a}{b}<\frac{a+2012}{b+2012}\)
#)Giải :
Quy đồng mẫu số :
\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b > 0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số
So sánh ab + 2001a và ab + 2001b
- Nếu a < b => tử số của phân số thứ nhất < tử số của phân số thứ hai
=> \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
- Nếu a = b => hai phân số bằng nhau và bằng 1
- Nếu a > b => tử số của phân số thứ nhất > tử số của phân số thứ hai
=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
a) Số hữu tỉ là số được viết dưới dạng \(\frac{a}{b}\)
d) \(\frac{2}{7}=\frac{18}{63}\) ; \(\frac{4}{9}=\frac{28}{63}\) Vì 18 < 28 mà 63 = 63
=> \(\frac{2}{7}< \frac{4}{9}\)
\(\frac{-17}{25}=\frac{-476}{700}\) ; \(\frac{-14}{28}=\frac{-350}{700}\) Vì -476 < -350 mà 700=700
=> \(\frac{-17}{25}< \frac{-14}{28}\)
1) Áp dụng a/b < 1 <=> a/b < a+n/b+n (a,b,n thuộc N*)
a/b = 1 <=> a/b = a+n/b+n (a,b,n thuộc N*)
a/b > 1 <=> a/b > a+n/b+n (a,b,n thuộc N*)
+ Với a/b < 1 <=> a/b < a+1/b+1
+ Với a/b = 1 <=> a/b = a+1/b+1
+ Với a/b > 1 <=> a/b > a+1/b+1
2) lm tương tự bài 1
1) Trường hợp a cũng là nguyên duơng
Xét a<b và a>b.
Xét a<b trước, ta có:
1-a/b=(b-a)/a..............(1)
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1...
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b