Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ADTCDTSBN
có: \(\frac{a+2001}{b+2001}=\frac{a}{b}=\frac{2001}{2001}=1\)
\(\Rightarrow\frac{a}{b}=\frac{a+2001}{b+2001}\)
ta xét tích
a( b +2001) = ab + 2001a
b(a + 2001) = ab + 2001b
vì b > 0 => b+ 2001>0
+) a>b => ab + 2001a > ab + 2001b
=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
+) a < b => ab + 2001a < ab + 2001b
=> \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
+) a = b
=> \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
Ta có : TH1 : a và b cùng dấu nên :
\(\frac{-a}{-b}=\frac{a}{b}\in N\)
\(b\ne0\)nên \(a>b\)thì \(\frac{a}{b}>0\)
Còn \(a< b\)thì \(\frac{a}{b}< 0\)
TH2 : a và b khác dấu
Có 2 cách
(1) : \(\frac{-a}{b}< 0\in Z\)
(2) : Tương tự trường hợp (1) \(\frac{a}{-b}< 0\)
Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương.
Chỉ cần so sánh tử số. '
So sánh ab + 2001a với ab + 2001b
Nếu a < b => tử số phân số thứ nhất < tử số phân số thứ hai
=>a/b < a+2001/b+2001
Nếu a = b
=> hai phân số bằng nhau = 1
Nếu a > b
=> Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
Xét tích a(b + 2001) = ab + 2001a (1)
b(a + 2001) = ab + 2001b (2)
TH1: nếu a < b
=> 2001a < 2001b (3)
Từ (1),(2),(3) => a(b + 2001) < b(a + 2001) => \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
TH2: nếu a > b
=> 2001a > 2001b (4)
Từ (1),(2),(4) => a(b+2001)>b(a+2001) => \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
TH3: nếu a = b => \(\frac{a}{b}=\frac{a+2001}{b+2001}=1\)
để so sánh a/b và a+2012/b+2012
Ta xét tích:a(b+2012) và b(a+2012)
Vì b>0 =>b+2012>0
*a>b <=>2012a>2012b
<=>a(b+2012)>b(a+2012)
<=>a/b>a+2012/b+2012
*a=b<=>2012a=2012b
<=>a(b+2012)=b(a+2012)
<=>a/b=a+2012/b+2012
*a<b<=>2012a<2012b
<=>a(b+2012)<b(a+20120
<=>a/b<a+2012/b+2012
KL: a>b <=>a/b>a+2012/b+2012
....(tương tự như trên)
Quy đồng mẫu số:
\(\frac{a}{b}=\frac{a\left(a+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì \(b>0\)nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh \(ab+2001a\)với \(ab+2001b\)
- Nếu \(a< b\)\(\Rightarrow\)tử số phân số thứ nhất\(< \)phân số thứ hai.
\(\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
- Nếu \(a=b\Rightarrow\)hai phân số bằng nhau \(=1\)
- Nếu \(a>b\)\(\Rightarrow\)tử số phân số thứ nhất \(>\)tử số phân số thứ hai.
\(\Rightarrow\)\(\frac{a}{b}>\frac{a+2001}{b+2002}\)
ỦNG HỘ NHA CÁC THÁNH ONLINE MATH
THANKS NHIỀU
\(\frac{a}{b}\) và \(\frac{a+2005}{b+2005}\)
Ta so sánh:
a( b+2005 ) và b( a + 2005)
hay ab + a2005 và ba + b2005
nghĩa là cần so sánh:
a2005 và b2005
Nếu a > b
\(\Rightarrow\) a2005 > b2005
\(\Rightarrow\) a(b +2005) > b(a + 2005)
\(\Rightarrow\frac{a}{b}>\frac{a+2005}{b+2005}\)
Nếu a < b
\(\Rightarrow\) a2005 < b2005
\(\Rightarrow\) a(b +2005) < b(a +2005)
\(\Rightarrow\) \(\frac{a}{b}< \frac{a+2005}{b+2005}\)
Nếu a = b
\(\Rightarrow\frac{a}{b}=1=\frac{a+2005}{b+2005}\)
ban tuyệt quá