Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét hiệu \(\frac{a}{b}-\frac{a+1}{b+1}=\frac{a\left(b+1\right)}{b\left(b+1\right)}-\frac{b\left(a+1\right)}{b\left(b+1\right)}=\frac{ab+a-ba-b}{b\left(b+1\right)}=\frac{a-b}{b\left(b+1\right)}\)
Do b(b+1) > 0 nên ta xét các trường hợp :
\(a< b\Rightarrow a-b< 0\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
\(a=b\Rightarrow a-b=0\Rightarrow\frac{a}{b}=\frac{a+1}{b+1}=1\)
\(a< b\Rightarrow a-b>0\Rightarrow\frac{a}{b}>\frac{a+1}{b+1}\)
Chúc em học tốt :))
ADTCDTSBN
có: \(\frac{a+2001}{b+2001}=\frac{a}{b}=\frac{2001}{2001}=1\)
\(\Rightarrow\frac{a}{b}=\frac{a+2001}{b+2001}\)
ta xét tích
a( b +2001) = ab + 2001a
b(a + 2001) = ab + 2001b
vì b > 0 => b+ 2001>0
+) a>b => ab + 2001a > ab + 2001b
=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
+) a < b => ab + 2001a < ab + 2001b
=> \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
+) a = b
=> \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
a) Số hữu tỉ là số được viết dưới dạng \(\frac{a}{b}\)
d) \(\frac{2}{7}=\frac{18}{63}\) ; \(\frac{4}{9}=\frac{28}{63}\) Vì 18 < 28 mà 63 = 63
=> \(\frac{2}{7}< \frac{4}{9}\)
\(\frac{-17}{25}=\frac{-476}{700}\) ; \(\frac{-14}{28}=\frac{-350}{700}\) Vì -476 < -350 mà 700=700
=> \(\frac{-17}{25}< \frac{-14}{28}\)
\(\frac{a}{b}\) và \(\frac{a+2005}{b+2005}\)
Ta so sánh:
a( b+2005 ) và b( a + 2005)
hay ab + a2005 và ba + b2005
nghĩa là cần so sánh:
a2005 và b2005
Nếu a > b
\(\Rightarrow\) a2005 > b2005
\(\Rightarrow\) a(b +2005) > b(a + 2005)
\(\Rightarrow\frac{a}{b}>\frac{a+2005}{b+2005}\)
Nếu a < b
\(\Rightarrow\) a2005 < b2005
\(\Rightarrow\) a(b +2005) < b(a +2005)
\(\Rightarrow\) \(\frac{a}{b}< \frac{a+2005}{b+2005}\)
Nếu a = b
\(\Rightarrow\frac{a}{b}=1=\frac{a+2005}{b+2005}\)
Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)
\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0
Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)
Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)
\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)
Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)
Lời giải:
Xét $\frac{a}{b}-\frac{a+n}{b+n}=\frac{a(b+n)-b(a+n)}{b(b+n)}=\frac{n(a-b)}{b(b+n)}$
Nếu $a>b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}>0$
$\Rightarrow {a}{b}>\frac{a+n}{b+n}$
Nếu $a=b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}=0$
$\Rightarrow {a}{b}=\frac{a+n}{b+n}$
Nếu $a<b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}<0$
$\Rightarrow {a}{b}<\frac{a+n}{b+n}$
Mình làm câu a
\(Để\frac{a}{b}< \frac{a+c}{b+d}\) thì a(b+d) < b(a+c) ↔ ab + ad , ab + bc ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
\(Để\frac{a+c}{b+d}< \frac{c}{d}\) thì (a+c).d < (b+d).c ↔ ad + cd < bc + cd ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)