Với mọi số tự nhiên n khác 0. Chứng minh 4n+1 và 5n+1 là hai số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
Gọi d là UCLN của 3n + 1 và 4n + 1
=> 3n+1 ⋮ d => 12n+4 ⋮ d
4n+1 ⋮ d => 12n+3 ⋮ d
=> (12n+4) – (12n+3) ⋮ d
=> 1 ⋮ d => d = 1
Vậy 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau
giúp minh câu này với CMR 3n-1 và 6n-3 là nguyên tố cùng nhau (mọi n đều thuộc số nguyên tố khác 0)
ta có
gọi d là ƯCLN (3n+1 ; 4n+1)
suy ra 3n+1 chia hết cho d
4n+1 chia hết cho d
thì 12n +4 chia hết cho d
12n+3 chia hết cho d
suy ra 12n+4 -12n+3 chia hết cho d
suy ra 1 chia hết cho d
suy ra d =1
vậy 2 số này là 2 số nguyên tố cùng nhau
Gọi \(d=ƯCLN\left(4n+1;5n+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+1⋮d\\5n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}20n+5⋮d\\20n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
Vậy: 4n+1 và 5n+1 là hai số nguyên tố cùng nhau