Cho em hỏi tại sao g phụ thuộc vào h? Và tại sao có thể coi g là như nhau với các vật gần mặt đất? (g là gia tốc rơi tự do của vật, h là độ cao)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tại mặt đất: \(g_0=G\cdot\dfrac{M}{R^2}\)
Tại độ cao h: \(g=G\cdot\dfrac{M}{\left(R+h\right)^2}\)
Xét tỉ lệ:
\(\dfrac{g_0}{g}=\dfrac{\left(R+h\right)^2}{R^2}=\dfrac{9,81}{4,9}=2\)
\(\Rightarrow\dfrac{\left(R+h\right)^2}{R^2}=2\Rightarrow h=2650,97km\)
Quãng đường vật rơi nửa thời gian đầu:
Quãng đường vật rơi nửa thời gian cuối
Quãng đường vật rơi: h = h 1 + h 2
Đáp án D
Quãng đường vật rơi nửa thời gian đầu:
Quãng đường vật rơi nửa thời gian cuối
Quãng đường vật rơi:
Độ cao lúc thả vật:
Vận tốc khi chạm đất:
v = gt = 10.4 = 40m/s
\(s_2-s_1=40\Leftrightarrow s-s_1-s_1=40\Leftrightarrow s-2s_1=40\)
\(\Rightarrow\dfrac{1}{2}gt^2-2\cdot\dfrac{1}{2}gt_1^2=40\)
Mà: \(t_1=\dfrac{1}{2}t\Rightarrow\dfrac{1}{2}gt^2-2\cdot\dfrac{1}{2}g\left(\dfrac{1}{2}t\right)^2=40\)
\(\Leftrightarrow\dfrac{1}{4}gt^2=40\Leftrightarrow t=\sqrt{\dfrac{40}{\dfrac{1}{4}g}}=\sqrt{\dfrac{40}{\dfrac{1}{4}\cdot10}}=4\left(s\right)\)
\(\Rightarrow\left\{{}\begin{matrix}h=s=\dfrac{1}{2}gt^2=\dfrac{1}{2}\cdot10\cdot4^2=80\left(m\right)\\v=gt=10\cdot4=40\left(m/s\right)\end{matrix}\right.\)
Vậy: h = 80 (m), t = 4 (s) và v = 40 (m/s).
có thể coi các vật gần đất g như nhau vì
\(g=\dfrac{G.m}{\left(R+h\right)^2}=...\)
h ở gần mặt đất nên h rất nhỏ xo với R nên có thể bỏ qua h