Tìm x ϵ Z để A = x - 5/9 - x có giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐểA nguyên thì x^2+2x+x+2-3 chia hết cho x+2
=>-3 chia hết cho x+2
=>x+2 thuộc {1;-1;3;-3}
=>x thuộc {-1;-3;1;-5}
b: B nguyên khi x^2+x+3 chia hết cho x+1
=>3 chia hết cho x+1
=>x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-2;2;-4}
Lời giải:
Với $x$ nguyên, để $N$ nguyên thì $\sqrt{x}-5$ là ước của $9$
$\Rightarrow \sqrt{x}-5\in\left\{\pm 1;\pm 3;\pm 9\right\}$
$\Rightarrow \sqrt{x}\in\left\{4; 6; 8; 2; 14; -4\right\}$
Vì $\sqrt{x}\geq 0$ nên: $\sqrt{x}\in\left\{4; 6; 8; 2; 14\right\}$
$\Rightarrow x\in\left\{16; 36; 64; 4; 196\right\}$
\(P=\dfrac{x-5}{x-4}:\dfrac{x-5}{2x}=\dfrac{2x}{x-4}\)
\(\Rightarrow\)\(\dfrac{2x}{x-4}\in Z\)
\(\Rightarrow\)\(\dfrac{2\left(x-4\right)+8}{x-4}\in Z\)
\(\Rightarrow\)\(2+\dfrac{8}{x-4}\in Z\Rightarrow\)\(\dfrac{8}{x-4}\in Z\Rightarrow x-4\inƯ\left(8\right)=\left\{...\right\}\)
Bạn làm tiếp nhé!
Để A nguyên thì \(\sqrt{x}-1\inƯ\left(5\right)\)
Mà Ư(5)={1;-1;5;-5}
=> \(\sqrt{x}-1\in\left\{1;-1;5;-5\right\}\)
Ta có bảng sau:
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
\(\sqrt{x}\) | 2 | 0 | 6 | -4 |
x | 4 | 0 | 36 | loại |
Vậy \(x\in\left\{0;4;36\right\}\)
Để C là số nguyên thì x chia hết cho 2x-1
=>2x chia hết cho 2x-1
=>2x-1+1 chia hết cho 2x-1
=>\(2x-1\in\left\{1;-1\right\}\)
mà x lớn nhất
nên 2x-1=1
=>x=1
Để C có giá trị là một số nguyên
⇒ 6x-1 : 3x+2
3x+2 : 3x+2
⇒ 6x-1 : 3x+2
2(3x+2) : 3x+2
⇒ 6x-1 : 3x+2
6x+4 : 3x+2
⇒ (6x+4) - (6x-1) :3x+2
⇒ 6x+4 - 6x+1 : 3x+2
⇒ 5 : 3x+2
⇒3x+2 thuộc Ư(5) = 5;-5;-1;1
⇒x = 1;-1
Bổ sung phần c và d luôn:
c, C = \(\dfrac{2}{5}\)
\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)
\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)
\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6
\(\Leftrightarrow\) x2 = 11
\(\Leftrightarrow\) x2 - 11 = 0
\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)
d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)
C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))
\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)) \(\in\) Ư(5)
Xét các TH:
4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)
Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z
Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)
Để A là số nguyên thì \(x-5⋮9-x\)
\(\Leftrightarrow4⋮x-9\)
\(\Leftrightarrow x-9\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{10;8;11;7;13;5\right\}\)