K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Khó quá

NV
1 tháng 7 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

NV
1 tháng 7 2021

b.

ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)

Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)

\(\Rightarrow2x^2-10x=2t^2-8\)

Phương trình trở thành:

\(2t^2-8-3t+6=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-5x+4}=2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤7

Phương trình đã cho tương đương với:

3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

⇔x=6

vì với 23≤x≤7

thì: (33x−2+4+17−x−1+3x2+x−2)

21 tháng 1 2018

5(+x)-4=24

21 tháng 1 2018

8

31 tháng 8 2017

ai giải hộ với nhanh cái mk sắp đi học òi

2 tháng 9 2017

thui chữa òi ko cần làm đâu

AH
Akai Haruma
Giáo viên
27 tháng 1 2022

Bạn tham khảo thêm ở link sau:

https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831

28 tháng 11 2021

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)