Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
b.
ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)
\(\Rightarrow2x^2-10x=2t^2-8\)
Phương trình trở thành:
\(2t^2-8-3t+6=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x+4}=2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
(1)Phương trình đã cho tương đương với:
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là . Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:
Phương trình đã cho tương đương với:
=0
=0
vì với
thì:
a, đặt \(\sqrt{x+5}=t\Rightarrow\)\(t^2-5=x\) ta có pt \(\left(t^2-5\right)^2-4\left(t^2-5\right)-3=t\)
Giải ra t=2 thay vào x=-1
b, đăt \(x=a,\sqrt{x^2+1}=b\)ta có pt
\(b^2+3a=\left(a+3\right)b\)
\(b^2-ab+3a-3b=b\left(b-a\right)+3\left(a-b\right)\)
\(=\left(b-3\right)\left(b-a\right)=0\)
\(TH:b=3,a=b\)\(\sqrt{x^2+1}=3\Rightarrow x^2+1=9\Rightarrow x=\mp2\sqrt{2}\)
\(x=\sqrt{x^2+1}\Rightarrow x^2=x^2+1\left(L\right)\)
3,
đk: \(-x^4+3x-1\ge0\)
Có \(-\left(x^4+1\right)\le-2x^2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\)
Áp dụng bunhia có: \(\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\le\sqrt{\left(1+1\right)\left(3x-2x^{^2}+2x^2-3x+2\right)}=2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le2\) (*)
Có: \(x^4-x^2-2x+4=\left(x^4+1\right)-x^2-2x+3\ge2x^2-x^2-2x+3=\left(x-1\right)^2+2\ge2\) (2*)
Từ (*) (2*) dấu = xảy ra khi x=1 (TM)
Vậy x=1
Khó quá