cho \(a+b=c+d\) và \(a^2+b^2=c^2+d^2\) . Chứng minh \(a^{2016}+b^{2016}=c^{2016}+d^{2016}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{d}{b}=\frac{c}{a}\Leftrightarrow\frac{d^{2016}}{b^{2016}}=\frac{c^{2016}}{a^{2016}}=\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}=\frac{c^{2016}+d^{2016}}{a^{2016}+b^{2016}}\)
(áp dụng tính chất dãy tỉ số bằng nhau)
Suy ra \(\frac{a^{2016}+b^{2016}}{a^{2016}-b^{2016}}.\frac{c^{2016}-d^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}.\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}\)
\(=\frac{b^{2016}}{d^{2016}}.\frac{d^{2016}}{b^{2016}}=1\)
Câu 1:
\(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\)
\(\Rightarrow (a^{2016}+b^{2016})(c^{2016}-d^{2016})=(a^{2016}-b^{2016})(c^{2016}+d^{2016})\)
\(\Leftrightarrow 2(bc)^{2016}=2(ad)^{2016}\Rightarrow (bc)^{2016}=(ad)^{2016}\)
\(\Rightarrow (\frac{a}{b})^{2016}=(\frac{c}{d})^{2016}\)
\(\Rightarrow \frac{a}{b}=\pm \frac{c}{d}\) (đpcm)
Câu 2:
Nếu $a+b+c+d=0$ thì: \(\left\{\begin{matrix} a+b=-(c+d)\\ b+c=-(d+a)\\ c+d=-(a+b)\\ d+a=-(b+c)\end{matrix}\right.\)
\(\Rightarrow M=(-1)+(-1)+(-1)+(-1)=-4\)
Nếu $a+b+c+d\neq 0$
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5(a+b+c+d)}{a+b+c+d}=5\)
\(\Rightarrow \left\{\begin{matrix} 2a+b+c+d=5a\\ a+2b+c+d=5b\\ a+b+2c+d=5c\\ a+b+c+2d=5d\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b+c+d=3a(1)\\ a+c+d=3b(2)\\ a+b+d=3c(3)\\ a+b+c=3d(4)\end{matrix}\right.\)
Từ \((1);(2)\Rightarrow b+a+2(c+d)=3(a+b)\Rightarrow c+d=a+b\)
\(\Rightarrow \frac{a+b}{c+d}=1\)
Tương tự: \(\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)
\(\Rightarrow M=1+1+1+1=4\)
Ta có: \(a^2+b^2=c^2+d^2\)
\(\Rightarrow a^2-c^2=d^2-b^2\)
\(\Rightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\left(1\right)\)
Lại có: \(a+b=c+d\)\(\Rightarrow a-c=d-b\)
Nếu a=b =>b=d
\(\Rightarrow a^{2016}+b^{2016}=c^{2016}+d^{2016}\) đúng
Nếu \(a\ne c\Rightarrow b\ne d\)
\(\Rightarrow a-c=d-b\ne0\)
Khi đó (1) trở thành:
\(a+c=b+d\)(\(a-c,d-b\ne0\) nên ta có thể đơn giản) (2)
Mà a+b=c+d (3)
Cộng theo vế của (2) và (3)
\(2a+b+c=b+c+2d\)
\(\Rightarrow2a=2d\Rightarrow a=d\Rightarrow b=c\)
Vì \(a=d;b=3\Rightarrow a^{2016}+b^{2016}=c^{2016}+d^{2016}\) đúng
Vậy ta luôn có \(a^{2016}+b^{2016}=c^{2016}+d^{2016}\)với điều kiện của đề