K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

a. TH1: n chẵn . Đặt n = 2k (k thuộc Z)
=> ( n+10 ) (n+15) = (2k+10 )( 2k+15) = 4k^2 + 50k + 150 chia hết cho 2. 
TH2:  n lẻ (làm tương tự)

b. Vì n là số tự nhiên nên n;(n+1);(n+2) là 2 số tự nhiên liên tiếp 
=> Trong 3 số có 1 số chia hết cho 2 và 1 số chia hết cho 3.
Suy ra tích của chúng chia hết cho 2 và 3

c. n(n+1)(2n+1) = n(n+1)(n+2+n-1) = n(n+1)(n+2) + n(n+1)(n-1)
Lí luận tương tự ý b ta được đpcm

14 tháng 1 2018

a) \(n+1\inƯ\left(n^2+2n-3\right)\)

\(\Leftrightarrow n^2+2n-3⋮n+1\)

\(\Leftrightarrow n\left(n+1\right)+n-3⋮n+1\)

\(n\left(n+1\right)⋮n+1\Rightarrow n-3⋮n+1\)

\(\Leftrightarrow n+1-4⋮n+1\)

\(n+1⋮n+1\Rightarrow-4⋮n+1\Rightarrow n+1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\) \(-2\) \(2\) \(-4\) \(4\)
\(n\) \(-2\) \(0\) \(-3\) \(1\) \(-5\) \(3\)

Vậy...

b) \(n^2+2\in B\left(n^2+1\right)\)

\(\Leftrightarrow n^2+2⋮n^2+1\)

\(\Leftrightarrow n^2+1+1⋮n^2+1\)

\(n^2+1⋮n^2+1\) nên \(1⋮n^2+1\Rightarrow n^2+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n^2+1\) \(-1\) \(1\)
\(n\) \(\sqrt{-2}\) (vô lý, vì 1 số ko âm mới có căn bậc hai)

\(0\) (tm)

Vậy \(n=0\)

c) \(2n+3\in B\left(n+1\right)\)

\(\Leftrightarrow2n+3⋮n+1\)

\(\Leftrightarrow2n+2+1⋮n+1\)

\(\Leftrightarrow2\left(n+1\right)+1⋮n+1\)

\(2\left(n+1\right)⋮n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\)
\(n\) \(-2\) \(0\)

Vậy...

18 tháng 1 2018

a) n+1∈Ư(n2+2n−3)n+1∈Ư(n2+2n−3)

⇔n2+2n−3⋮n+1⇔n2+2n−3⋮n+1

⇔n(n+1)+n−3⋮n+1⇔n(n+1)+n−3⋮n+1

n(n+1)⋮n+1⇒n−3⋮n+1n(n+1)⋮n+1⇒n−3⋮n+1

⇔n+1−4⋮n+1⇔n+1−4⋮n+1

n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}

Ta có bảng sau:

n+1n+1 −1−1 11 −2−2 22 −4−4 44
nn −2−2 00 −3−3 11 −5−5 33

Vậy...

b) n2+2∈B(n2+1)n2+2∈B(n2+1)

⇔n2+2⋮n2+1⇔n2+2⋮n2+1

⇔n2+1+1⋮n2+1⇔n2+1+1⋮n2+1

n2+1⋮n2+1n2+1⋮n2+1 nên 1⋮n2+1⇒n2+1∈Ư(1)={−1;1}1⋮n2+1⇒n2+1∈Ư(1)={−1;1}

Ta có bảng sau:

n2+1n2+1 −1−1 11
nn √−2−2 (vô lý, vì 1 số ko âm mới có căn bậc hai)

00 (tm)

Vậy n=0n=0

c) 2n+3∈B(n+1)2n+3∈B(n+1)

⇔2n+3⋮n+1⇔2n+3⋮n+1

⇔2n+2+1⋮n+1⇔2n+2+1⋮n+1

⇔2(n+1)+1⋮n+1⇔2(n+1)+1⋮n+1

2(n+1)⋮n+12(n+1)⋮n+1 nên 1⋮n+1⇒n+1∈Ư(1)={−1;1}1⋮n+1⇒n+1∈Ư(1)={−1;1}

Ta có bảng sau:

n+1n+1 −1−1 11
nn −2−2 00
7 tháng 10 2016

1) Số số hạng là n 

Tổng bằng : \(\frac{n\left(n+1\right)}{2}=378\\ \Rightarrow n\left(n+1\right)=756\\ \Rightarrow n\left(n+1\right)=27.28\\ \Rightarrow n=27\)

2) a) \(n+2⋮n-1\\ \Rightarrow n-1+3⋮n-1\\ \Rightarrow3⋮n-1\)

b) \(2n+7⋮n+1\\ \Rightarrow2\left(n+1\right)+5⋮n+1\\ \Rightarrow5⋮n+1\)

c) \(2n+1⋮6-n\\ \Rightarrow2\left(6-n\right)+13⋮6-n\\ \Rightarrow13⋮6-n\)

d) \(4n+3⋮2n+6\\ \Rightarrow2\left(2n+6\right)-9⋮2n+6\\ \Rightarrow9⋮2n+6\)

3 tháng 6 2017

undefined

5 tháng 6 2017

2

\(\dfrac{n^3-8n^2+2n}{n^2+1}=\dfrac{n\left(n^2+1\right)-8\left(n^2+1\right)+n+8}{n^2+1}\)

để n3-8n2+2n chia hết cho n2+1 thì (n+8) phải chia hết cho n2+1

với n=0=> \(\dfrac{n+8}{n^2+1}=8\left(tm\right)\)

với n=1 => \(\dfrac{n+8}{n^2+1}=\dfrac{9}{2}->loai\)

với n=2=> \(\dfrac{n+8}{n^2+1}=2->tm\)

với n=3 => \(\dfrac{n+8}{n^2+1}=\dfrac{11}{10}\left(loai\right)\)

với \(n\ge4\) => \(n+8< n^2+1\)

Vậy n=0 và n=2

7 tháng 8 2023

a) \(25⋮n+2\left(n\in Z\right)\)

\(\Rightarrow n+2\in\left\{-1;1;-5;5;-25;25\right\}\)

\(\Rightarrow n\in\left\{-3;-1;-7;3;-27;23\right\}\)

b) \(2n+4⋮n-1\)

\(\Rightarrow2n+4-2\left(n-1\right)⋮n-1\)

\(\Rightarrow2n+4-2n+2⋮n-1\)

\(\Rightarrow6⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-2;4;-5;7\right\}\)

c) \(1-4n⋮n+3\)

\(\Rightarrow1-4n+4\left(n+3\right)⋮n+3\)

\(\Rightarrow1-4n+4n+12⋮n+3\)

\(\Rightarrow13⋮n+3\)

\(\Rightarrow n+3\in\left\{-1;1;-13;13\right\}\)

\(\Rightarrow n\in\left\{-4;-2;-15;10\right\}\)

7 tháng 8 2023

a) n ϵ{3;1;7;3;27;23}

b) {0;2;1;3;2;4;5;7}

c) n ϵ {4;2;15;10}

7 tháng 12 2019

a) Ta chia làm 2 trường hợp

*Trường hơp 1: n chẵn

Nếu n chẵn => (n + 10)⋮2 => (n+10)(n+15)⋮2

*Trường hợp 2: n lẻ

Nếu n lẻ => (n + 15)⋮ 2 => (n+10)(n+15)⋮2

Vậy với mọi trường hợp n ∈ N thì (n+10)(n+15)⋮2

8 tháng 12 2019

Thanks.

AH
Akai Haruma
Giáo viên
2 tháng 8 2021

Lời giải:
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}=\frac{n(n+2)+(n+1)^2}{(n+1)(n+2)}=\frac{2n^2+4n+2}{n^2+3n+2}>1\) do $2n^2+4n+2> n^2+3n+2$ với mọi $n\in\mathbb{N}^*$

$B=\frac{2n+1}{2n+3}< 1$ do $2n+1< 2n+3$

Do đó $A>B$