Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Ta có:
\(2n^2-n+2\)
\(=2n^2+n-2n-1+3\)
\(=n.\left(2n+1\right)-\left(2n+1\right)+3\)
\(\Rightarrow n.\left(2n+1\right)⋮\left(2n+1\right)\)
\(\Rightarrow2n+1⋮2n+1\)
\(\Rightarrow3⋮2n+1\)
\(\Rightarrow2n+1\inƯC\left(3\right).\)
\(\Rightarrow2n+1\in\left\{1;-1;3;-3\right\}.\)
Có 4 trường hợp:
\(\Rightarrow\left[{}\begin{matrix}2n+1=1\\2n+1=-1\\2n+1=3\\2n+1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n=0\\2n=-2\\2n=2\\2n=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=-1\\n=1\\n=-2\end{matrix}\right.\)
Vậy \(n\in\left\{0;-1;1;-2\right\}.\)
Chúc bạn học tốt!
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
2
\(\dfrac{n^3-8n^2+2n}{n^2+1}=\dfrac{n\left(n^2+1\right)-8\left(n^2+1\right)+n+8}{n^2+1}\)
để n3-8n2+2n chia hết cho n2+1 thì (n+8) phải chia hết cho n2+1
với n=0=> \(\dfrac{n+8}{n^2+1}=8\left(tm\right)\)
với n=1 => \(\dfrac{n+8}{n^2+1}=\dfrac{9}{2}->loai\)
với n=2=> \(\dfrac{n+8}{n^2+1}=2->tm\)
với n=3 => \(\dfrac{n+8}{n^2+1}=\dfrac{11}{10}\left(loai\right)\)
với \(n\ge4\) => \(n+8< n^2+1\)
Vậy n=0 và n=2